GENERAL OPERATIONS MANUAL
Purpose

This manual has been prepared to cover the policies and procedures governing the operation of the flight department of Air Methods Corporation (herein referred to as Air Methods) under its Air Carrier Certificate QMLA253U. The purpose of this manual is to ensure the utmost in safety of operation and the general efficiency of the flight department. It provides firm guidelines to enable all company personnel to carry out their assigned duties and responsibilities in accordance with company policies and FAA regulations.

Distribution

A copy of this manual will be provided at the following locations and be readily available to Air Methods’ personnel:

- Flight Standards District Office (FAA)
- Each Base of Operations
- Each Aircraft

NOTE: A PDF (portable document format) version of the General Operations Manual and Operations Specifications posted on the Air Methods intranet or stored on the base computer and available for review by all Air Methods’ employees may be utilized for each base of operations as a replacement for a “hard copy.”

Revision Control

[135.21]

In accordance with FAR 135.21(a), revisions will be prepared by the Director of Operations. Each revision will have a revision number and date in the upper right corner of the page. Revisions will be consecutively numbered. All revisions will be submitted to the FAA for review and acceptance. Revisions will be recorded in the Record of Revisions. For paper copies, old pages will be replaced with the new effective pages and tracked using the Log of Revisions.

Operations Specifications changes will not be reflected in the General Operation Manual revisions. Currency of Operations Specifications is found in each table of contents for each applicable section.

General Operations Manual revision control is accomplished in the upper right hand corner of each page.

Revisions to all manuals representing a base/aircraft or within a particular department at the Certificate Holder’s Corporate Offices will be sent to the Regional Aviation Director or department head, as appropriate. Revisions, when emailed, will be accompanied by a Publication Verification Form (a sample of this form can be found in the Appendix of this manual – the actual form is located on Flight Deck > Resources > Corp Forms). Each Regional Aviation Director or department head will verify that the appropriate manuals under their control have been revised.

Once verification is complete, a completed PVF will be sent to the Regional Aviation Director who will send it to the public folder PubVerifications-Ops@airmethods.com.

New material in the latest revision will be marked with a vertical bar to the right of text, to ease identification of revised content.
The Corporate Publications Department oversees the creation and revision of Air Method’s controlled
documents/manuals. Managers may submit suggestions and corrections for incorporation into a manual by
emailing Corporate Publications at corppubs@airmethods.com or by contacting the manual’s owner directly
with recommended changes. Corporate Publications will save suggested updates for the next revision of the
manual and coordinate with the manual owner to incorporate changes. Changes will be summarized in the
change summary table and indicated throughout the manual by revision bars.

For further details on manual revisions and control, access the Document Control Manual on FlightDeck.

Applicability

[Operations Specification A001]

All operations conducted by Air Methods shall be considered FAR Part 135 except:

- Training flights
- Maintenance flights

All helicopter operations (including those listed above conducted under FAR part 91 in VFR conditions) shall
adhere to the weather minimums listed in 135.609.

Emergency Deviation

When emergency conditions do not allow the company to effect a timely amendment of the General
Operations Manual or Operations Specifications, the Director of Operations, Chief Pilot, or Director of
Maintenance will seek and receive a verbal authorization from the Certificate Holding District Office
(CHDO). The Director of Operations, Chief Pilot, or Director of Maintenance in turn will provide
documentation describing the nature of the emergency within 24 hours of the verbal authorization.

Safety Management System

Air Methods has joined the FAA’s SMS Pilot Project by electing to voluntarily implement a Safety
Management System.

Acceptance of this manual does not constitute approval or acceptance of any part, process, element or
component of Air Methods’ SMS.
Revision Record

<table>
<thead>
<tr>
<th>Rev No.</th>
<th>Rev Date</th>
<th>Page Numbers</th>
<th>Revised By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01-25-07</td>
<td>ALL</td>
<td>BJF</td>
</tr>
<tr>
<td>2</td>
<td>08-01-08</td>
<td>ALL</td>
<td>BJF</td>
</tr>
<tr>
<td>3</td>
<td>02-23-09</td>
<td>iv, v, ix A-5, A-20, B-6, B-9, B-10, B-11, B-22, B-24, B-27, B-30, BA-1, BA-9, BA-10, C-3</td>
<td>BJF</td>
</tr>
<tr>
<td>6</td>
<td>8/10/11</td>
<td>v, vi, A-4, A-5</td>
<td>Chris Bassett</td>
</tr>
<tr>
<td>7</td>
<td>1/20/12</td>
<td>ALL</td>
<td>Chris Bassett</td>
</tr>
<tr>
<td>8</td>
<td>3/11/14</td>
<td>ALL</td>
<td>Dennis McCall</td>
</tr>
<tr>
<td>9</td>
<td>5/14/15</td>
<td>ALL</td>
<td>Director of Operations, Dennis McCall</td>
</tr>
</tbody>
</table>
Record of Acceptance

DATE ACCEPTED:

FAA PART 135 PRINCIPAL INSPECTOR
ANM-FSDO-03
Change Summary

This table summarizes the major changes made to each revision, not all changes. Throughout each review cycle, subsequent entries may change prior entries or proposed changes may be held, disregarded, and/or obsolete. This is a summary of input received throughout the duration. Changes throughout the manual are indicated by revision bars.

<table>
<thead>
<tr>
<th>Rev</th>
<th>Rev Date</th>
<th>Summary of Change(s)</th>
<th>Received Via</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>1/25/07</td>
<td>N/A – Initial Release</td>
<td>N/A</td>
</tr>
<tr>
<td>1</td>
<td>11/1/07</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>8/1/08</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2/23/09</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>11/9/09</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>1/15/11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>8/10/11</td>
<td>Quick rev to update the page number and rev on pages A-4 (updated org chart) and A5 (Mgt. Personnel). And then also pages vi (Log of Revisions) and v (LOEP).</td>
<td>Chris Bassett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Formatted into the corporate template and ‘scrubbed’ (edit, proof, re-link)</td>
<td>Corp Pubs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changed Assistant Chief Pilot to Regional Aviation Director</td>
<td>Chris Bassett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changed Compliance Manager to Compliance Coordinator</td>
<td>Chris Bassett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incorporated Air Methods Maintenance Information System Updates (Section 5)</td>
<td>Teri Short, Chris Meinhardt, Wayne Ehlike</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added approval signature page (single FAA contact) and change summary table.</td>
<td>Chris Bassett, Corp Pubs</td>
</tr>
<tr>
<td>7</td>
<td>1/20/12</td>
<td>Revised the Cold Weather / Ground Icing procedure.</td>
<td>Dennis McCall</td>
</tr>
<tr>
<td>(Approved 6/8/12)</td>
<td></td>
<td>Revised the ASM and CCE job descriptions.</td>
<td>Chris Bassett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Took out the Inventory Shelf Life Checklist</td>
<td>Wayne Ehike</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added minimum altitude for ceilings 1,500’ and greater – day or night</td>
<td>Chris Bassett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added that the OCC should be notified regarding practice PAIPs.</td>
<td>Chris Bassett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inserted sample of Form M060 MEL Extensions</td>
<td>Dennis McCall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changed Aircraft Full List Report and Short Term Due Report to Aircraft Status Report (Ramco terminology).</td>
<td>Dennis McCall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In the Extension of MEL Deferral Time Limits section – added that extensions may be ‘e-mailed’.</td>
<td>Dennis McCall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated the Ground Icing procedure slightly.</td>
<td>Dennis McCall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changed ‘position hold’ to ‘line up and wait’ in Runway Incursions section.</td>
<td>Dennis McCall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added a note regarding rescue missions: “this section does not apply to Class D Operations”.</td>
<td>Dennis McCall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor edits</td>
<td>Chris Bassett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated HazMat contact information</td>
<td>Chris Bassett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revised content on exceeding a 14 hour day</td>
<td>Chris Bassett</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Replaced DOT Chart 12 with updated DOT Chart 14</td>
<td>Chris Bassett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acronyms – changed TFR to Temporary Flight Restrictions</td>
<td>Chris Bassett</td>
</tr>
<tr>
<td>Rev</td>
<td>Rev Date</td>
<td>Summary of Change(s)</td>
<td>Received Via</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>Submitted 11/30/12 (Approved 3/25/14)</td>
<td>eliminated FLT (nowhere in the manual). Changed “VFR aircraft will receive a VOR operational check every 6 months.” to “VFR aircraft will receive a VOR operational check every 6 calendar months.” (sect 2.59)</td>
<td>Dennis McCall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changed Altitude to Attitude. (sect 2.35)</td>
<td>Chris Bassett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reformatted, re-referenced, and added sample forms in Appendix.</td>
<td>Corp Pubs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added a bullet for each role regarding SMS.</td>
<td>Ed Stockhausen / SART</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added updates on NEF Program to the MEL section.</td>
<td>Wayne Ehike</td>
</tr>
</tbody>
</table>
| | | Updated titles/departments/job descriptions per the reorganization:
- Vice President, Aviation Support Services – Sr. Vice President, Aviation Services
- Director of Operations – Vice President of Operations / Director of Operations
- Aviation Compliance Coordinator – Aviation Compliance Manager
- Area Aviation Manager – Regional Aviation Manager
- Certificate Compliance Evaluator – Aviation Compliance Evaluator
- Aviation Support Services – Aviation Services
- Added Assistant Chief Pilot
- Added Sr. Aviation Compliance Evaluator
- Eliminated Aviation Services Manager
- Eliminated Aviation Training Manager
- Eliminated Aviation Base Manager | Corp Pubs |
| | | Updated roles with new job descriptions (Assistant Chief Pilot, Regional Aviation Director, Regional Aviation Manager, Sr. Aviation Compliance Evaluator, Aviation Compliance Evaluator). | Dennis McCall |
| | | Updated links/paths/references per the portal switch to FlightDeck. | Corp Pubs |
| | | Updated the Risk Assessment section with new tool / procedures. | Scott Tish |
| | | Rolled the Safety Notice 02-2006 mentioned in the job descriptions (as well as the Safety Notice 01-2011 that superseded it into the “Adverse or Cold Weather Operations section” (2.3) and archived both notices. Now reference this section vs. the old Safety Notice. | Corp Pubs |
| | | For the Fixed Wing Trip Sheet (sect 4.3), added that the forms need to be scanned and emailed to Air Methods (just like the DFLs). | Dennis McCall |
| | | Added verbiage from Zero Tolerance Cell Phone Policy (from August 2012 Safety Connect, etc.) to the Cell Phone policy in this manual (sect 2.8). | Chris Bassett |
| | | Updated the NVG section (added and referenced forms/instructions). | Corp Pubs |
| | | Replaced current Haz Mat section with April 2010 section from Dennis (FAA) – and ‘Air Methodized’. | Dennis McCall |
| | | Maintenance Operations – Maintenance and mechanical Discrepancies section: took out “Scheduled / Routine” from first paragraph. | ERC / Wayne Ehke |
| | | Updated contact information on the MIS Report form. | Chris Meinhardt |
| | | Added Trade Secret / Confidential Footer to every page. | Dennis McCall |
| | | Updated job descriptions (new submittal to FAA). | Chris Bassett |
| | | Responded (and made applicable updates) resulting from the FAA letter dated 2/4/13 to Ed Stockhausen (Interim DO). | Dennis McCall / Corp Pubs |
| | | Added Ops Spec A010 content for approved weather sources in Section 2 “Weather Sources Approved for Aircraft Flight Planning”. | Dennis McCall 3/29/13 |
| | | Added details about our HazMat training program (re: methods to be used for determining if hazardous materials are present when loading patients/passengers at scene locations and reporting when such items are discovered – added slides to hazmat Indoc training). | Corp Pubs/Michael Giovannini 6/21/13 |
| | | Updated the Flight Time and Duty Time Section (renamed “Flight Time Limitations and Rest Requirements: Unscheduled One and Two Pilot”). | Dennis McCall 1/3/14 |
Summary of Change(s)

<table>
<thead>
<tr>
<th>Rev</th>
<th>Rev Date</th>
<th>Summary of Changes</th>
<th>Received Via</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>5/14/15</td>
<td>Updated the logo.</td>
<td>Corp Pubs</td>
<td>2/5/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated the SMS bullet in the roles to continuous improvement statement.</td>
<td>Corp Pubs</td>
<td>2/5/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Search and Rescue Procedure - Rearranged content to emphasize importance of notifying OCC prior to departing on a search and assist flight.</td>
<td>Director of Operations, Dennis McCall (ASAP ERC)</td>
<td>11/27/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part 91 Confusion in GOM - Added verbiage (Applicability section) to conduct all Part 135 and Part 91 operations IAW GOM.</td>
<td>ASAP ERC</td>
<td>3/3/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revision Change Summary - Added “as applicable” next to IIMC Procedure in the list in 2.16 Document/Equipment Required in the Aircraft.</td>
<td>Dennis McCall, Director of Ops</td>
<td>12/28/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Need to update the Cell Phone Policy – Raj rewrote.</td>
<td>SART</td>
<td>8/16/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum Altitude for VFR section (3.11) - changed wording for clarity.</td>
<td>Michael Benton, Aviation Compliance Manager</td>
<td>6/19/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 2.16 Current Manuals - Added: “PIC is responsible for ensuring current versions of the following manuals are on the aircraft”.</td>
<td>Michael Benton</td>
<td>3/12/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GOM & GMM - (1) Moved GMM Section 2.8 (mntn & mechanical discreps) to GOM Section 5.3 (mntn & mechanical difficulties), and added a link in GMM referring to the GOM. (2) Kept GOM Section 2.37 (Mntn Inspection after occurrence) as is.</td>
<td>Wayne Ehike, Maintenance Compliance Manager</td>
<td>4/22/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Search and Rescue Procedure - Moved the quoted passage from the closing of the Search/Rescue Flight Limitations section (GOM 2.53) to the beginning of the section and added “must”.</td>
<td>Dennis McCall (ASAP ERC)</td>
<td>11/27/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Training Department Reorganization – titles. (S. Tish)</td>
<td>Robert Steinbauer, ATM</td>
<td>3/14/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conditional Flight Release - section updated.</td>
<td>Chris Bassett/Dennis McCall</td>
<td>12/20/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changed TSN - Time Since Now to Time Since New.</td>
<td>Casey Marland</td>
<td>4/21/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.4 Maintenance Operational Check. Revised MOC Procedure – rolled in MOC ROC bulletin.</td>
<td>Dennis McCall</td>
<td>1/21/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IO – Haiti. 2.36 International Operations. Reference GOM IO.</td>
<td>Michael Benton</td>
<td>12/5/13</td>
</tr>
<tr>
<td>Rev</td>
<td>Rev Date</td>
<td>Summary of Changes</td>
<td>Received Via</td>
<td>Date</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>--------------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.38 Maintenance Operational Check – Post</td>
<td>Wayne Ehlke</td>
<td>11/28/12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintenance. Deleted 2nd paragraph and replaced with following verbiage: “Any maintenance performed must be entered in the Air Methods' Record of Maintenance. For all routine maintenance performed in the field by a company mechanic, a "Conform Your Aircraft (CYA)" or "Required Inspection Item (RII)" check will be performed. Refer to the General Maintenance Manual (GMM) Section 2 for detailed procedures necessary to comply with an RII. If a second mechanic is not available, a pilot will perform the CYA check.”**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reporting - (1) Operational Control Specialists to Operational Control Analysts; using FAR term "specialist" (2) Aviation Compliance Manager reports to Director of Operations; (3) Org chart update.</td>
<td>Michael Benton</td>
<td>3/25/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Memos / Bulletins - (1) Ops Memos and the log are not being kept up by anyone. Moving to Air methods bulletin process. (2) Changed the section on Ops Memos and Air Methods Bulletins. (3) Log deleted – 2 memos in there and the memos – moved to archived folder – added a note in that old folder.</td>
<td>Michael Benton</td>
<td>6/17/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IEP Corrective Action / Preventive Action (CAPA) Form - Regarding non-compliance with AMC’s PMSP. Training Department updated the training.</td>
<td>Chief Pilot, Scott Tish</td>
<td>8/21/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Org Chart - Moved Michael under Dennis in Org Chart.</td>
<td>Aviation Compliance Manager, Michael Benton</td>
<td>12/11/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 3.3.7, Helicopter NVG Maintenance Requirements - Removed requirement to track the time on NVGs.</td>
<td>Michael Benton</td>
<td>11/12/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inconsistency in job descriptions regarding audit of DFLs – took off of PAM’s.</td>
<td>Michael Benton / Joe Lemma</td>
<td>3/17/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Org Chart. Removed number of RADs and RMDs on the Org Chart.</td>
<td>Wayne Ehlke</td>
<td>11/18/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paragraph 1.3.8. - ACE role. (See 2nd to last paragraph on P. 1-14</td>
<td>Michael Benton</td>
<td>6/21/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Included under duties and responsibilities for the Aviation Compliance Evaluators, a statement that the ACE's and flight instructors will ensure a pilot's eligibility prior to beginning initial or recurrent training and prior to each evaluation by reviewing all pertinent data on the pilot certificate (i.e. category and class, pilot ratings, English proficient, and signature) and medical certificate (class, date, limitations, and signatures).</td>
<td>FAA (Michael Benton)</td>
<td>5/2/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 2.38 Mntn Oper Check - Post Mntn – clarified that mechanics perform RII inspections (and that is preferred). If can't be done, a PILOT performs a CYA (mechanic does RII, pilot does CYA).</td>
<td>Wayne Ehlke</td>
<td>1/14/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCC Notification Procedures and Comm Spec Procedures - Updated procedures to include more examples.</td>
<td>Dennis McCall</td>
<td>12/10/12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyclic / Control Yoke Warning Cover section: third para - Added pilots or mechanics will utilize a YELLOW</td>
<td>Wayne Ehlke</td>
<td>4/28/14</td>
</tr>
<tr>
<td>Rev</td>
<td>Rev Date</td>
<td>Summary of Changes</td>
<td>Received Via</td>
<td>Date</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>--------------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cyclic/control…</td>
<td>Wayne Ehlke</td>
<td>4/28/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removed note in Deferral Procedures for Class 2 Items (NEF)</td>
<td>Frank Hogue via Casey Marland</td>
<td>4/24/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flight Following. Changed that the Arch Comm Center is located in St Louis to Omaha.</td>
<td>Tom Hihn - via Dennis McCall</td>
<td>5/5/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.23.1-A tail-end-repositioning-flight that will exceed 14.5 hours of duty time requires the approval of the Regional Aviation Director or their designee, Chief Pilot, Aviation – fixed.</td>
<td>Emanuel Garcia via M Benton</td>
<td>5/7/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added "Conditional Flight Releases" section.</td>
<td>Michael Bentley</td>
<td>6/4/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated the flight authorization policy (standalone) to better align with GOM.</td>
<td>M Koenes & Tom Smith</td>
<td>6/19/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Letter from the FAA on their review of GOM Rev 8 from Dennis / Raj meeting late May 2014 2 bullets: one on Shift Change and Post Mission Briefings (2.56). And second bullet on Releasing Aircraft with Inoperative Equipment (5.6.2). Updated per recommendations.</td>
<td>FAA (Dennis McCall)</td>
<td>5/23/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Took the HazMat section out and made it a separate Haz Mat Manual.</td>
<td>FAA (Dennis McCall)</td>
<td>5/23/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fuel Sumping - All Aircraft section (2.26) – wrote clarification.</td>
<td>Raj Helweg, Chief Pilot</td>
<td>7/11/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated guidance for the DDL and what to do with it when completed.</td>
<td>Wayne Ehlke</td>
<td>7/23/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added updated MEL Deferral Extension form 5213.</td>
<td>Wayne & Greg Gerrells</td>
<td>7/23/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rolled in content of applicable bulletins (Cell Phone, MOC ROC, and Weather Minimums).</td>
<td>Corp Pubs</td>
<td>7/28/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changed the wording of Section 3.10: Engine RPM is at ground idle to Engine RPM as appropriate.</td>
<td>Raj/Scott B</td>
<td>8/11/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change Roles…Asst Chief Pilot to Sr Training Mgr…etc. Whole “Management Personnel” section being updated</td>
<td>Corp Pubs</td>
<td>8/15/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added reference to GOM in W & B section in the GMM.</td>
<td>Sheldon (ERC)</td>
<td>8/26/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Took NVG maintenance and repair content out of GOM (added link to NVG SOP).</td>
<td>Topher Hendrick, Materials</td>
<td>10/20/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 1.3.9 – New / Relief Pilots - reworded.</td>
<td>Raj Helweg / Sheldon Berrett</td>
<td>1/20/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added new MEL form (5213)</td>
<td>Wayne Ehlke</td>
<td>2/10/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added MEL Form instructions.</td>
<td>Wayne Ehlke</td>
<td>2/10/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replaced all occurrences of the word “HEMS” with “HAA” new definition of HAA - Helicopter Air Ambulance replaces HEMS</td>
<td>Dennis McCall</td>
<td>3/24/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All references to “fuel quality manual” were replaced by “Aviation Fuel Management Program”</td>
<td>Dennis McCall</td>
<td>3/24/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Page ii - Applicability - Changed “…weather minimums listed in paragraph A021 of the Air Methods Operations Specifications…” to read “…weather minimums listed in 14 CFR Part 135.609.</td>
<td>Scott Boughton</td>
<td>4/1/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table of Contents - 3.16 - Removed "Operations Specifications Paragraph A021 and A050" since that</td>
<td>Scott Boughton</td>
<td>4/1/15</td>
</tr>
<tr>
<td>Rev</td>
<td>Rev Date</td>
<td>Summary of Changes</td>
<td>Received Via</td>
<td>Date</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>--------------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>paragraph pertains to topics no longer addressed in these OpSpecs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table of Contents - 9.3 – Changed title to "Operational Control Specialist" to align with 135.619.</td>
<td>Scott Boughton</td>
<td>4/1/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Management Personnel - Updated some job descriptions.</td>
<td>Scott Boughton</td>
<td>4/1/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Page 2-10 - Highest Obstacle - Changed "required by Operations Specification A021" to "required by 14 CFR Part 135.615"</td>
<td>Scott Boughton</td>
<td>4/1/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Page 2-22 - Para. 2.27 (2.28) Removed "and A021" from the sentence including "approved sources of weather for IFR operations are listed in Paragraph A010 and A021."</td>
<td>Scott Boughton</td>
<td>4/1/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Page 2-22 - Para. 2.27 (2.28) Changed "A021 requires a pilot to use an approved weather..." to "14 CFR Part 135.611 requires a pilot to use and approved weather..."</td>
<td>Scott Boughton</td>
<td>4/1/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Page 2-23 - Para. 2.31 (2.32) Changed "Pilots will not commence...unless otherwise approved by Operations Specifications paragraph A021." to "Pilots will not commence...unless authorized by 14 CFR Part 135.611"</td>
<td>Scott Boughton</td>
<td>4/1/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Page 2-24 - Para. 2.31 (2.32) Changed "Pilots may execute an instrument approach to one...the weather minimums in paragraph A021 of the Operations Specifications must be adhered to" to "Pilots may execute an instrument approach to one...the weather minimums in 14 CFR Part 135.609 must be adhered to."</td>
<td>Scott Boughton</td>
<td>4/1/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Page 2-25 - Para. 2.34 (2.35) Removed "A021" from this paragraph</td>
<td>Scott Boughton</td>
<td>4/1/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Page 2-32 (2-30) - Para. 2.44 (2.45) Passenger Briefing - added "If a rotorcraft is operated beyond autorotational distance from the shoreline; use of life preservers, ditching procedures including use of emergency exits, and the location and use of life rafts and other life preserver devices, if applicable."</td>
<td>Scott Boughton</td>
<td>4/1/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3 Management Personnel, removed FAR reference from PIC title.</td>
<td>Todd Ross, OCC</td>
<td>4/8/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell Phones... put the text ("airplane mode") immediately after "non-transmit mode"</td>
<td>Scott Boughton</td>
<td>4/8/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Para. 2.13 - DFL - Removed the words "Operations Specifications" from the second to last bullet point.</td>
<td>Scott Boughton</td>
<td>4/8/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Para. 2.29 - IFR Alternate Requirements - Inserted the words "alternate selection" between "following" and "criteria"</td>
<td>Scott Boughton</td>
<td>4/8/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 3.32 (2.32) - IFR Destination... - 4th paragraph, changed "Operations Specification A021" to "14 CFR Part 135.611"</td>
<td>Scott Boughton</td>
<td>4/8/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 3.32 - 12th paragraph, changed "Paragraph A021 of the Operations Specifications" to "14 CFR Part 135.609"</td>
<td>Scott Boughton</td>
<td>4/8/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 2.35 - IFR Limitations - Removed "A021" from the list</td>
<td>Scott Boughton</td>
<td>4/8/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 2.44 - Overwater - Added "135.168" to the list of requirements</td>
<td>Scott Boughton</td>
<td>4/8/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added a note to IFR section regarding alternate airport.</td>
<td>Scott Boughton</td>
<td>4/10/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Took out Risk Assessment section. Made it a separate program. Refer to it from GOM.</td>
<td>Dennis McCall</td>
<td>4/17/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added HAAO to the Flight Time Limitations and Rest</td>
<td>Dennis McCall</td>
<td>4/20/15</td>
</tr>
</tbody>
</table>
Summary of Changes

<table>
<thead>
<tr>
<th>Rev</th>
<th>Rev Date</th>
<th>Summary of Changes</th>
<th>Received Via</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Requirements section.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Daily Flight Log (DFL) / Load Manifest – Helicopters – added DFL requires an actual value for risk assessment.</td>
<td>Michael Benton</td>
<td>5/1/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCC section – added that OCC supports risk mitigation at predetermined levels IAW the Risk Assessment Program.</td>
<td>Michael Benton</td>
<td>5/1/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comm Spec section – added duty to ask if requests have been rejected or refused by other air ambulance operators.</td>
<td>Michael Benton</td>
<td>5/1/15</td>
</tr>
</tbody>
</table>
List of Effective Pages

<table>
<thead>
<tr>
<th>PAGE</th>
<th>STATUS</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>ii</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>iii</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>iv</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>v</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>vi</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>vii</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>viii</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>ix</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>x</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>xi</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>xii</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>xiii</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>xiv</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>xv</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>xvi</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>xlv</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-2</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-3</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-4</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-5</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-6</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-7</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-8</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-9</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-10</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-11</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-12</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-13</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-14</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-15</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-16</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-17</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-18</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-19</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-20</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-21</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-22</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-23</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-24</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-25</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-26</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-27</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-28</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-29</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>1-30</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-1</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-2</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-3</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-4</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-5</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-6</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-7</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-8</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-9</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-10</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-11</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-12</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-13</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-14</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-15</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-16</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-17</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-18</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-19</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-20</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-21</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-22</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-23</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-24</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-25</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-26</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-27</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-28</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-29</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-30</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-31</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-32</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-33</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-34</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-35</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-36</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-37</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-38</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-39</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-40</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-41</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-42</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>2-43</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>3-1</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>3-2</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>3-3</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>3-4</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>3-5</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>3-6</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>3-7</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>3-8</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>3-9</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>3-10</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>3-11</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>3-12</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>4-1</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>4-2</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>4-3</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>4-4</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>4-5</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
<tr>
<td>4-6</td>
<td>Rev 9</td>
<td>5/14/15</td>
</tr>
</tbody>
</table>

DATE ACCEPTED: 09 Dec 15

FAA PART 135 PRINCIPAL INSPECTOR

ANM-FSDO-03

Uncontrolled copy when downloaded or printed.
Refer to the Corporate Publications site for the most current version of this document.
Trade Secret and/or Confidential Commercial Information IAW 49 U.S.C. § 1114 and C.F.R. § 831.6
Table of Contents

PURPOSE .. I
DISTRIBUTION ... I
REVISION CONTROL ... I
APPLICABILITY ... II
EMERGENCY DEVIATION ... II
SAFETY MANAGEMENT SYSTEM .. II
REVISION RECORD .. III
RECORD OF ACCEPTANCE ... IV
CHANGE SUMMARY ... V
FAA (MICHAEL BENTON) ... VIII
LIST OF EFFECTIVE PAGES .. XII

1. **GENERAL INFORMATION** .. 1-1
 1.1 AIR METHODS BULLETINS .. 1-2
 1.2 ORGANIZATION CHART .. 1-3
 1.3 MANAGEMENT PERSONNEL ... 1-3
 1.4 ACRONYMS AND TERMS ... 1-23

2. **FLIGHT OPERATIONS – GENERAL** .. 2-1
 2.1 OPERATIONAL CONTROL ... 2-1
 2.2 ACCIDENT NOTIFICATION REQUIREMENTS .. 2-3
 2.3 ADVERSE OR COLD WEATHER OPERATIONS .. 2-4
 2.4 AIRCRAFT TRAINING / CURRENCY .. 2-6
 2.5 AIRPORT REQUIREMENTS AND DIAGRAMS .. 2-6
 2.6 BEFORE START / BEFORE TAKEOFF CONFIRMATION CHECK ... 2-7
 2.7 CARRIAGE OF WEAPONS ... 2-7
 2.8 CELL PHONES / PORTABLE ELECTRONIC DEVICES (PED) – UTILIZATION 2-7
 2.9 CONFLICT OF INTEREST .. 2-8
 2.10 COORDINATION TRAINING – PILOTS AND MEDICAL PERSONNEL ... 2-8
 2.11 CONDITIONAL FLIGHT RELEASE .. 2-8
 2.12 CYCLIC / CONTROL YOKE WARNING COVER .. 2-9
 2.13 DAILY FLIGHT LOG (DFL) / LOAD MANIFEST – HELICOPTERS ... 2-9
 2.14 DEPLANING AIRCRAFT AFTER LANDING / BEFORE TAKEOFF .. 2-11
 2.15 DESTINATION HAZARDS .. 2-11
 2.16 DETERIORATING WEATHER CONDITIONS ENROUTE .. 2-12
 2.17 DOCUMENT / EQUIPMENT REQUIRED IN AIRCRAFT .. 2-12
 2.18 DROPPING OBJECTS .. 2-13
 2.19 EMERGENCY NOTIFICATION ... 2-13
 2.20 EMERGENCY OPERATIONS ... 2-13
 2.21 EMERGENCY PROCEDURES – PERFORMING PRACTICE .. 2-14
 2.22 ENROUTE QUALIFICATIONS .. 2-14
 2.23 FLIGHT FOLLOWING .. 2-14
 2.24 FLIGHT TIME LIMITATIONS AND REST REQUIREMENTS: UNSCHEDULED ONE AND TWO PILOT CREWS 2-16
 2.25 FUELING ... 2-18
 2.26 FUEL SUMPING – ALL AIRCRAFT .. 2-21
 2.27 HAZARDS MAP – LOCAL AREA .. 2-21
 2.28 INSTRUMENT FLIGHT RULES – GENERAL .. 2-22
 2.29 INSTRUMENT FLIGHT RULES – OPERATIONS AT LOCATIONS WITHOUT WEATHER REPORTING 2-22
 2.30 IFR ALTERNATE REQUIREMENTS AND FUEL REQUIREMENTS .. 2-23
 2.31 IFR AND OVER THE TOP LIMITATIONS .. 2-23
 2.32 IFR DEPARTURES ... 2-23
 2.33 IFR DESTINATION REQUIREMENTS .. 2-24
 2.34 IFR DESTINATION REQUIREMENTS (ELIGIBLE ON-DEMAND OPERATIONS) 2-25
 2.35 IFR ENROUTE REQUIREMENTS ... 2-26
 2.36 IFR LIMITATIONS ... 2-26
GENERAL OPERATIONS MANUAL
Rev 9: 5/14/15

2.37 INADVERTENT INSTRUMENT METEOROLOGICAL CONDITIONS (IIMC) RECOVERY ... 2-26
2.38 INTERNATIONAL OPERATIONS ... 2-27
2.39 MAINTENANCE INSPECTION AFTER OCCURRENCE OR INCIDENT .. 2-27
2.40 MAINTENANCE OPERATIONAL CHECK – POST MAINTENANCE ... 2-28
2.41 MALFUNCTION / FAILURE OF REQUIRED EQUIPMENT .. 2-28
2.42 MEDICAL OXYGEN TANKS – FILLING AND CHANGING .. 2-28
2.43 OPERATING NEAR OTHER AIRCRAFT ... 2-29
2.44 OVERDUE / MISSING AIRCRAFT ... 2-29
2.45 OVERWATER / EXTENDED OVERWATER OPERATIONS .. 2-30
2.46 PASSENGER BRIEFING .. 2-31
2.47 PASSENGER OCCUPANCY OF A PILOT SEAT AND MANIPULATION OF FLIGHT CONTROLS ... 2-31
2.48 PERSONNEL QUALIFICATIONS .. 2-32
2.49 POST ACCIDENT / INCIDENT PLAN (PAIP) ... 2-32
2.50 PREFLIGHT PREPARATION .. 2-33
2.51 PILOT’S MAINTENANCE AND SERVICING PROCEDURES .. 2-34
2.52 RISK ASSESSMENT PROGRAM .. 2-35
2.53 RUNWAY INCursions .. 2-35
2.54 SAFETY BELTS, CHILD RESTRAINTS, AND CARRY ON BAGGAGE ... 2-36
2.55 SEARCH / ASSIST FLIGHT LIMITATIONS .. 2-36
2.56 SECURING OF CARGO AND AIRCRAFT ... 2-37
2.57 SHIFT CHANGE AND POST MISSION BRIEFINGS .. 2-38
2.58 STABILIZED APPROACH CONCEPT ... 2-38
2.59 STERILE COCKPIT .. 2-39
2.60 TEMPORARY FLIGHT RESTRICTIONS (TFRs) .. 2-39
2.61 VOR EQUIPMENT CHECKS ... 2-39
2.62 WEATHER SOURCES AND PROVIDERS APPROVED FOR AIRCRAFT FLIGHT PLANNING ... 2-41
2.63 WEIGHT AND BALANCE CONTROL ... 2-41
2.64 WIND LIMITATIONS .. 2-43

3. FLIGHT OPERATIONS – HELICOPTER SPECIFIC .. 3-1

3.1 FROST OPERATION ... 3-1
3.2 HELICOPTER NIGHT VISION GOGGLE OPERATIONS (HNVGO) .. 3-1
3.3 NVG CURRENCY ... 3-2
3.4 HELIPORT / LANDING ZONE DIAGRAMS .. 3-5
3.5 LAHSSO (LAND AND HOLD SHORT OPERATIONS) ... 3-5
3.6 LANDING ZONE LIMITATIONS .. 3-5
3.7 LANDING ZONE SAFETY AND CROWD CONTROL .. 3-6
3.8 LOADING AND UNLOADING PATIENT / PASSENGERS .. 3-7
3.9 MINIMUM ALTITUDE FOR VFR .. 3-8
3.10 OPERATIONS ON OR NEAR FROZEN WATERWAYS .. 3-8
3.11 SCENE AND HOSPITAL COMMUNICATIONS .. 3-9
3.12 SCENE FLIGHT OPERATIONS .. 3-9
3.13 SPECIAL VISUAL FLIGHT RULES (SVFR) .. 3-10
3.14 VFR / IFR OPERATIONS – FLIGHT PLANNING ... 3-10

4. FLIGHT OPERATIONS – FIXED WING SPECIFIC .. 4-1

4.1 AIRPORT SURFACE OPERATION ... 4-1
4.2 COLD WEATHER / GROUND ICING ... 4-1
4.3 TRIP SHEET / LOAD MANIFEST .. 4-5
4.4 DFL PROCEDURES AND TRIP SHEET FOR WHEELED AIRCRAFT .. 4-7
4.5 LAHSSO (LAND AND HOLD SHORT OPERATIONS) ... 4-7
4.6 LOADING AND UNLOADING PATIENT / PASSENGER .. 4-9
4.7 OPERATIONS FROM UNIMPROVED AIRPORTS ... 4-9
4.8 SPECIAL VISUAL FLIGHT RULES (SVFR) .. 4-11

5. MAINTENANCE OPERATIONS .. 5-1

5.1 AIRCRAFT AIRWORTHINESS CHECK .. 5-1
9.17 Loading and Unloading Patient – Fixed Wing Operations .. 9-3
9.18 Normal and Emergency Operations of Medical Equipment .. 9-3
9.19 Passenger Briefing .. 9-3
9.20 Safety Program ... 9-4
9.21 Securing Doors on the Aircraft .. 9-4
9.22 Securing of Cargo and Aircraft .. 9-4
9.23 Security of Aircraft Passengers .. 9-4
9.24 Smoking .. 9-4
9.25 Use of Drugs .. 9-4
9.26 Use of Intoxicants ... 9-4

10. communications specialist guidance .. 10-1

10.1 General Information .. 10-1
10.2 Duties and Responsibilities .. 10-1
10.3 Aircraft Status .. 10-2
10.4 Flight Following .. 10-2
10.5 Ground Transportation ... 10-2
10.6 Hazard and Weather Alerts from Operational Control Center 10-2
10.7 Post Accident / Incident Plan (PAIP) .. 10-2
10.8 Requests for Service .. 10-2
10.9 Transport Delays .. 10-3
10.10 General Operations Manual ... 10-3

11. appendix: sample forms and documents ... 11-1

11.1 MEL Deferral Extension – 5213 .. 11-2
11.2 Daily Flight Log / Load Manifest – 5155 .. 11-3
11.3 Record of Airmen Flight and Duty Time (Duty Time Summary Report) 11-4
11.4 Deferred Discrepancy Log - 5157 .. 11-5
11.5 Mechanical Interruption Summary - 5158 ... 11-6
11.6 Instructions for IIMC Procedure Template .. 11-7
11.7 IIMC Form - 5159 ... 11-8
11.8 Publication Verification Request Form – 5412 ... 11-9
11.9 Fixed Wing Daily Flight Log / Trip Sheet – 5211 .. 11-10
11.10 NVG Preoperational Checklist – Form 5415 ... 11-11
11.11 Air Methods Bulletin Template .. 11-11
11.12 Sample Letter of Compliance .. 11-15
11.13 Service Difficulty Report - Form 5214 ... 11-16
11.14 Air Methods Carrier Certificate .. 11-17

12. operations specification .. 12-1
1. General Information

[119.43, 119.47, 135.21, 135.23, 135.81]

This manual sets forth Air Methods’ procedures and policies that are acceptable to the Administrator of the Federal Aviation Administration. Air Methods will keep this manual current with revisions as necessary. Air Methods maintains one copy of this manual in current form at the principal base of operations located at 7301 South Peoria, Englewood, CO 80112-4133. The Director of Operations will maintain the original copy of this manual. He/She will have the responsibility to keep it current, and to see that all new revisions are forwarded to the Chief Pilot.

Air Methods disburses copies of this manual in the following manner:

- One (1) copy of the complete manual will be kept in each aircraft. The Pilot-in-Command will make this manual available to ground and flight personnel for their use when the aircraft is away from home base.
- One (1) copy of the complete manual will be kept at each base of operations so that the pilots, ground, and maintenance personnel may have access to the copy at any time. All Air Methods’ personnel must use this manual in conducting all operations. As required by FAR 135.293(a)(1), all pilots will be tested at least annually on their knowledge of this manual via the CTS training software (GOM Module). All personnel shall have knowledge of this Manual in its entirety.
- The Chief Pilot will have a copy of this manual at their office. It will be the Chief Pilot’s responsibility to maintain a current copy in all aircraft and on the Air Methods Intranet.
- Other persons as assigned.

NOTE: A PDF (portable document format) version of the General Operations Manual and Operations Specifications posted on the Air Methods Intranet or stored on the base computer and available for review by all Air Methods’ employees may be utilized for each base of operations as a replacement for a “hard copy.”

The Pilots Reference Library, Airman’s Information Manual, FAR parts 91 and 135 are available on the Air Methods Intranet under “135 Aviation Ops”.

Air Methods has also furnished the Denver Flight Standards District Office (FSDO) of the Federal Aviation Administration (FAA) with a current and complete copy of the manual. The Director of Operations will furnish the FAA with all requests for changes and additions to this manual in a timely manner.

Great care has been taken to ensure that this manual is not contrary to any applicable Federal regulations, Air Methods’ Operating Certificate, or Air Methods’ Operations Specifications. However, errors do sometimes occur despite all efforts. If you find such a conflict; the regulation, certificate, or operations specification will take precedence. You are required to bring any such conflicts to the attention of the Director of Operations for correction.

All Air Methods’ aircraft will be operated in accordance with the manufacturer’s Aircraft Flight Manual. If a conflict is discovered in this GOM manual, the manufacturer’s Aircraft Flight Manual will take precedence. You are required to bring any such conflicts to the attention of the Director of Operations for correction.
1.1 Air Methods Bulletins

When preparing a company manual of any kind, it is not possible to anticipate all of the issues and questions that might arise and need to be addressed. Air methods bulletins (a sample of the Air Methods Bulletin can be found in the appendix of this manual) will be used to impart significant operations-related information when needed, to answer questions at the base or company level, or to supplement, but not change, the guidance contained in this General Operations Manual. Bulletins will not be issued with an expiration date. Periodically, each bulletin will be reviewed for continued validity and pertinence.

All current bulletins will be posted on the Air Methods’ intranet under Corp Pubs. The Director of Operations will route applicable bulletins to the FAA. Bulletins are an informal means of addressing, on an as-needed basis, significant operations or specific aircraft issues. Input from the field is encouraged and appreciated. Program Aviation Managers will ensure that pilots and mechanics read and comply with applicable bulletins.

The Director of Operations, Director of Maintenance, Chief Pilot, or Aviation Compliance Manager may issue Air Methods Bulletins that contain new content.

For more detail on the Air Methods Bulletins, please see the Air Methods Document Control Manual.
1.2 Organization Chart

1.3 Management Personnel

[135.23, 119.69]

Air Methods has appointed the following persons to the management positions listed:

Dennis McCall ... Director of Operations
Rajesh Helweg Chief Pilot
Chris Meinhardt... Director of Maintenance

Air Methods shall notify the CHDO within 10 days should a change be made to the Director of Operations, Director of Maintenance, or Chief Pilot positions.

The names of all Regional Aviation Directors and Regional Maintenance Directors will be included in

Paragraph A006 of the Air Methods Operations Specifications. A current list of all Regional Aviation Managers, Program Aviation Managers, Senior Lead Pilots, and Lead Pilots will be maintained by the Director of Operations. A listing of all certificate pilots will be maintained by the Chief Pilot.
Each of these people has the authority to act for Air Methods in their respective sphere and exercise operational control under FAR Part 135.77. Their specific duties and responsibilities are listed on the following pages.

1.3.1 Director of Operations

- Reports to the President of Domestic Air Medical Services.
- Supervises the Regional Aviation Directors.
- Communicates with the FAA and the NTSB.
- Coordinates with the Director of Maintenance the timely correction of mechanical irregularities and discrepancies.
- Develops and approves Operations Department policies and procedures, to include the General Operations Manual, personnel policy (in conjunction with Human Resources), and all other policies which affect Company Operations.
- Devises revisions to this manual as needed, submits the proposed revisions to the FSDO, receives confirmation from the FSDO that the revisions are acceptable, and then distributes those revisions to the Chief Pilot.
- Ensures that all flight operations are conducted safely and in compliance with all FARs, Operations Specifications, and Air Methods’ policies/procedures.
- Has authority to act for the Certificate holder, including the signing of FAA correspondence and operations specifications.
- Notifies the CHDO of any accidents, incidents, or other significant events.
- Oversees the development and implementation of the budget for the Operations Department.
- Responsible for issuing bulletins and periodically reviewing these for continued validity and pertinence.
- Serves as a member of the Air Methods Corporation Systems Accountability Round Table.
- Notifies the CHDO of any change of the principle base of operations as required in 119.47(b).
- Disseminates information to all flight crewmembers pertaining to regulations and company policies/procedures.
- Actively participates in the continuous improvement phase (level 4) of the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

1.3.2 Chief Pilot

- Reports to the President of Domestic Air Medical Services.
- Supervises Assistant Chief Pilots, pilot records supervisor, and aviation training coordinators.
• Advises the Director of Operations regarding out-of-compliance issues.
• Advises the Director of Operations regarding the training of flight crew personnel.
• Develops Training Department Budget.
• Manages the new hire pilot program to include hiring requirements, the review of background checks and Pilot Record Improvement Act information and coordinates with Human Resources.
• Assists the Director of Operations in the oversight of flight operations, formulating operations policies, coordinates those policies, and coordinates operations and training.
• Develops the pilot and crewmember training manuals/programs and aircraft checklists.
• Ensures that Air Methods’ aircraft are equipped with required company flight publications (Charts, Jeppesen, NOAA, Aircraft Flight Manuals etc.). Ensures publications are revised in a timely manner.
• Ensures that Air Methods’ aircraft are properly equipped for applicable operations.
• Ensures that all flight crew personnel are current, certified, and qualified, in accordance with the requirements specified in the FARs.
• Ensures that the aircraft and base copies of this General Operations Manual and Operations Specifications are current. Revisions shall be submitted by the Chief Pilot to the appropriate Regional Aviation Directors.
• In the absence or unavailability of the Director of Operations the Chief Pilot will assume those duties.
• Maintains qualification as Pilot-in-Command in at least one aircraft used in the certificate holder’s operation.
• Provides supervision to all company pilots concerning regulatory issues.
• Responsible for ensuring aircraft procedures are standardized throughout the Air Methods’ fleet.
• Responsible for ensuring the logging/tracking of the Record of Airman Flight and Duty Time forms in Pilot 411 (a sample of this form can be found in the Appendix of this manual – the actual form is generated automatically from the Pilot 411 application). These forms are required to be filed by the 10th day of the following month.
• Responsible for ensuring the maintenance of proficiency records, pilot files, duty time records, reports, and correspondence pertaining to flight operations activities in accordance with the FARs.
• Responsible for the development of policies for Air Methods' Flight and Ground Instructors and Check Airmen.
• Serves as a member of the Air Methods Corporation Systems Accountability Round Table.
• Submits all reports regarding flight personnel to the Director of Operations.
• Supervises all training activities of flight crew personnel including training schedules.
• Performs other duties as assigned by the Director of Operations.
• Actively participates in the continuous improvement phase (level 4) of the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

1.3.3 Assistant Chief Pilot

• Reports to the Chief Pilot.
• Oversees and coordinates all flight training, ground training qualifications and scheduling.
• Participates as a member of the Air Methods’ management team to promote a successful/safe operation.
• Responsible for thorough knowledge of Air Methods’ policies and procedures, the General Operations Manual (GOM), pilot training program and compliance with Federal Aviation Regulations/Aeronautical Information manual (FARs).
• Maintains Check Airman and Flight/Ground Instructor status in aircraft under their purview.
• Researches, develops, writes and implements training materials and examinations used in ground and flight training.
• Conducts/Audits and supervises new-hire pilot basic indoctrination training.
• Conducts/Audits simulator training.
• Participates in developing ways to operationally minimize preventable aircraft damage.
• Provides supervision of all company pilots concerning regulatory issues.
• Supervises the Air Methods Flight Training and Standardization Department including supervision of Instructors, check airmen and training events.
• Responsible for the professional development of the Training Department Staff including Instructors and Check Airmen.
• Ensures timely and proper notification of all significant training/operations issues (including accidents and incidents) to the Chief Pilot. When the Chief Pilot is not available, notifies the Director of Operations (President of Air Medical Services in the absence of Director of Operations) and notifies the proper authorities (FAA, NTSB, etc.).
• Supervises and develops policies for Company Flight and Ground Instructors and Check Airman.
• Assists the Chief Pilot in the development and management of the Training Department budget.
• In the absence of the Chief Pilot, calls for and conducts Pilot Review Boards for flight related issues. Actively participates in the continuous improvement phase (level 4) of the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.
• Other duties as assigned by the Director of Operations or Chief Pilot.
1.3.4 Aviation Compliance Manager

- Reports to the Director of Operations
- Manages the Operational Control Center
- Supervises the Operational Control Specialists.
- May act as company Check Airman and Instructor.
- Develops training programs and solutions to address FAA notices, bulletins, and other guidance material, and VDRP.
- Ensures compliance with aviation procedures and applicable Federal Aviation Regulations.
- Liaisons with the Corporate Safety Department, including the conduct of root cause analysis, and coordinates the implementation of recommendation from the analysis with the Director of Operations and the Vice President of Safety.
- Participates as a member of the Air Methods Corporate Systems Accountability Round Table.
- Responsible for a thorough knowledge of Air Methods’ policies and procedures as well as meeting operational goals and objectives.
- Responsible for a thorough knowledge of Federal Aviation Regulations, the General Operations Manual, Operations Specifications and other pertinent information.
- Responsible for auditing required pilot and medical crew member records to ensure that they are organized and compliant to meet the needs of Air Methods and to ensure that business is carried out legally and effectively in accordance with FAA regulations.
- Travels as needed to conduct base, aircraft, and safety audits and ensure that action is implemented to address areas of improvement.
- Works as a member of the Air Carrier Certificate management team.
- Acts as Administrator of the Air Methods 411 system, Flight Log (FLOG), and Flight Management System (FMS).
- Performs other duties as assigned by the Director of Operations.
- Member of the accident investigation Go-Team, responds to aviation accidents and incidents as directed by the Director of Operations.
- Actively participates in the continuous improvement phase (level 4) of the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

1.3.5 Regional Aviation Director

- Supervises the Regional Aviation Managers.
- Ensures all operations within the region are compliant with regulations, operations specifications, and the General Operations Manual.
- Participates as a member of Air Methods management team to promote a successful operation.
• Responsible for aviation operations for the region. Has aviation decision-making authority for the region over the Regional Aviation Manager.

• Communicates with the Regional Vice President to support business duties.

• Serves as Regional Vice President’s aviation advisor and aviation liaison with customers.

• Researches and reports to Director of Operations on FRx budget/actual variances.

• Ensures completion of aviation management portions of Base Opening/Moving/Closing Policy and Procedures Manual.

• Attends Regional and Program management team meetings as requested by the Regional Vice President.

• Responsible for thorough knowledge of Air Methods’ policies and procedures, assigned area’s operational goals and objectives, and ensures flight operations activities are in compliance with Federal Aviation Regulations/Aeronautical Information Manual (FAR) and the General Operations Manual guidelines (GOM).

• Ensures that revisions for the General Operations Manual and Operations Specifications are distributed and revised as required and the appropriate Publications Verification Request Form (PVF) is completed and submitted to the certificate holder (a sample PVF can be found in the appendix of this manual – the actual form is located in the Corp Forms repository).

• Ensures that the Director of Operations and Chief Pilot are notified as soon as practical in the event of encounters with the FAA such as ramp checks, area visits, or request to contact ATC.

• Assists the Regional Business Director or Regional Operations Manager in the integration of aircraft, spare aircraft, and aviation personnel assuring availability in support of operational requirements.

• Assists training department to facilitate the coordination of locations, aircraft, pilots for training events.

• Coordinates with Regional Safety Director on safety related issues as needed.

• Investigates aviation mishaps and performs a root cause analysis upon request.

• Advises the Chief Pilot regarding out-of-compliance or safety issues.

• Submits all required reporting regarding flight personnel to the Chief Pilot and the Director of Operations.

• Monitors the behaviors and performance of aviation personnel to ensure they comply with Air Methods policies and procedures.

• Coordinates with Chief Pilot and Corporate Human Resources regarding employee disciplinary issues related to aviation.

• Delegates non-aviation related pilot behavior issues to the Human Resources Generalist for disposition.

• May maintain qualification as a pilot in at least one aircraft used within area operations.

• May perform flight instruction and check airman duties as directed by the Chief Pilot.
• Coordinates with the Corporate Safety Department on all safety matters.
• Attends base safety meetings when present at the base.
• Responsible for ensuring audit deficiencies and compliance issues found in their area of responsibility are corrected.
• Coordinates with Regional Clinical Managers to schedule and conduct medical crewmember and communication specialist initial and recurrent training. Monitors crewmember CTS compliance. Conducts Air Medical Resource Management training.
• Ensures in-service training for aviation and medical personnel occurs prior to placing a back-up aircraft back in service and training records are accurate.
• Responsible for conducting or coordinating ferry and MOC flights.
• Coordinates with Regional Operations Manager on regional spare aircraft placement.
• Ensures pilot and aircraft schedules are consistently coordinated and posted.
• Monitors and responds to AIDMOR submissions.
• Coordinates with the Regional Maintenance Director/Manager on timely correction of mechanical irregularities and discrepancies impacting maintenance activities. Manages subscriptions for GPS updates for assigned aircraft.
• Acts as the on-scene representative for all accidents/incidents occurring within assigned area coordinated with appropriate regional field management.
• Promotes and educates with pilots the SMS and the ASAP program.
• Responsible for ensuring each program under their authority is in compliance with all company safety guidelines, including manuals, adverse weather plans, PAIP’s, etc.
• Provides technical and professional assistance to eliminate or control unsafe behaviors and attitudes.
• Maintains and encourages objectivity in assessing or evaluating operations, maintenance, fuel quality, Communication Specialist personnel and the requirement for anonymity with regard to safety matters.
• Participates in the hiring process for all new pilots and conducts interviews.
• Develops justification for Hard-to-Fill stipends and other recruitment enticements.
• Provides reports as requested by the Director of Operations.
• Actively participates in the continuous improvement phase (level 4) of the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.
• Performs other duties as assigned.

1.3.6 Regional Aviation Manager

• Supervises the Program Aviation Managers and the Lead Pilots.
• Ensures all operations within region are compliant with regulations, Operations Specifications and General Operations Manual.
• Participates as a member of Air Methods’ management team to promote a successful operation.
• Responsible for aviation operations for the region.
• Communicates with the Regional Vice President to support business duties.
• Serves as Regional Vice President’s aviation advisor and aviation liaison with customers.
• Researches and reports to Director of Operations on FRx budget/actual variances.
• Ensures completion of aviation management portions of Base Startup, Closure and Movement Manual.
• Attends Regional and Program management team meetings as requested by Regional Vice President.
• Responsible for thorough knowledge of Air Methods’ policies and procedures, assigned area’s operational goals and objectives, and ensures flight operations activities are in compliance with Federal Aviation Regulations/Aeronautical Information Manual (FAR) and the General Operations Manual guidelines (GOM).
• Ensures that revisions for the General Operations Manual and Operations Specifications are distributed and revised as required and the appropriate Publications Verification Form(s) are completed and submitted to the certificate holder.
• Ensures that the Director of Operations and Chief Pilot are notified as soon as practical in the event of encounters with the FAA such as ramp checks, area visits, or request to contact ATC.
• Assists the Regional Business Director or Regional Operations Manager in the integration of aircraft, spare aircraft and aviation personnel assuring availability in support of operational requirements.
• Delegates aviation field logistical support to Regional Operations Manager.
• Delegates aviation administrative tasks to Regional Administrative Assistant.
• Attends or delegates attendance to fleet status teleconferences (KPI Dashboard).
• Coordinates pilot training in the region.
• Coordinates with Regional Safety Director on safety related issues as needed.
• Investigates aviation mishaps and performs a root cause analysis upon request.
• Advises the Chief Pilot regarding out-of-compliance or safety issues.
• Submits all required reporting regarding flight personnel to the Chief Pilot and the Director of Operations.
• Monitors the behaviors and performance of aviation personnel to ensure they comply with Air Methods’ policies and procedures.
• Coordinates with Chief Pilot and Corporate Human Resource regarding employee disciplinary issues related to aviation.
• Delegates non-aviation related pilot behavior issues to Human Resources Generalist for disposition.
Ensures that the 411 system is being utilized by pilots.

May maintain qualification as a pilot in at least one aircraft used within area operations.

May perform flight instruction and check airman duties as directed by the Chief Pilot.

Coordinates with the Corporate Safety Department on all safety matters.

Attends base safety meetings when present at the base.

Responsible for ensuring audit deficiencies and compliance issues found in their area of responsibility are corrected.

Coordinates with Regional Clinical Managers to schedule and conduct medical crewmember and communication specialist initial and recurrent training. Monitor crewmember CTS compliance. Conduct Air Medical Resource Management training.

Ensure in-service training for aviation and medical personnel occurs prior to placing a back-up aircraft back in service and training records are accurate.

Responsible for conducting or coordinating ferry and MOC flights.

Coordinates with Regional Logistics Manager on regional spare aircraft placement.

Ensures pilot and aircraft schedules are consistently coordinated and posted.

Monitors and responds to AIDMOR submissions.

Coordinates with the Regional Maintenance Director/Manager on timely correction of mechanical irregularities and discrepancies impacting maintenance activities. Manage subscriptions for GPS updates for assigned aircraft.

Acts as the on-scene representative for all accidents/incidents occurring within assigned area coordinated with appropriate regional field management.

Promotes and educates with pilots the SMS and the ASAP program.

Responsible for ensuring each program under their authority is in compliance with all company safety guidelines, including manuals, adverse weather plans, PAIP’s etc…

Provides technical and professional assistance to eliminate or control unsafe behaviors and attitudes.

Maintains and encourages objectivity in assessing or evaluating operations, maintenance, fuel quality, Communication Specialist personnel and the requirement for anonymity with regard to safety matters.

Participates in the hiring process for all new pilots and conducts interviews.

Develops justification for Hard-to-Fill stipends and other recruitment enticements.

Provides reports as requested by Director of Operations.

Actively participates in the continuous improvement phase (level 4) of the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

Performs other duties as assigned.
1.3.7 Aviation Compliance Evaluator

- Reports to the Chief Pilot through the Assistant Chief Pilot(s) for ground and flight standards and compliance issues.

- Performs as Check Airman, Flight Instructor, and Ground Instructor.

- Evaluates operational compliance including all aspects of safety, flight operations, maintenance operations, and other procedures and policies as described in the General Operations Manual.

- Will correct out-of-compliance issues immediately. When unable to make immediate corrections the Aviation Compliance Evaluator will coordinate with the Regional Aviation or Maintenance Director, as appropriate to ensure the problem is corrected.

- Has authority to shut down base operations when appropriate for out of compliance or for safety issues.

- Reports all out-of-compliance issues to the Chief Pilot, Assistant Chief Pilot(s). Has discipline authority and will coordinate with Human Resources, Director of Operations, Chief Pilot, Assistant Chief Pilot and Regional Directors on matters of discipline.

- Ensures that standardized training and checking procedures, provided by the certificate, are adhered to.

- Assists the Chief Pilot and Assistant Chief Pilot(s) in all pilot record keeping requirements in accordance with applicable FARs and policies.

- Submits required reports in a timely manner.

- Operates advanced aviation training devices (AATDs) including movement of the device. Operates full motion simulators.

- Assists in the development and implementation of flight and ground training schedules.

- Is knowledgeable of FARs and Air Methods’ General Operations Manual and other required manuals.

- Assists the Chief Pilot and Assistant Chief Pilot(s) in the development of the aircraft checklist and Air Methods’ Pilot Training Programs.

- Assists the Chief pilot, Assistant Chief Pilot and Director of Safety in investigating aviation mishaps and performing root cause analyses.

- AATD instructors will be designated as Air Transportation Flight Instructor?-FTD and will maintain familiarity with AMC operations and procedures. AATD instructors must possess a Commercial Certificate, but are not required to maintain a Class II FAA physical. AATD Instructors must complete initial or transition check airman / training captain training, and complete an observation within the previous 24 calendar months by an AMC evaluator prior to performing instructional duties in an FTD.

- Will develop and conduct (as appropriate):
 - Basic indoctrination training
 - Initial and recurrent ground training
 - Initial and recurrent flight training
 - Instrument training (ground and flight)
Night vision goggle (NVG) training (ground and flight)

- Ensures a pilot’s eligibility for the position prior to beginning any training and prior to each evaluation by reviewing all pertinent data on the pilot certificate (i.e. category and class, pilot ratings, English proficient, limitations - if any, and signature) and medical certificate (class, date, limitations, and signatures).

- Actively participates in the continuous improvement phase (level 4) of the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

- Performs other duties as assigned by the Chief Pilot or Assistant Chief Pilot(s).

1.3.8 Program Aviation Manager

- Reports to the Regional Aviation Director or the Regional Aviation Manager.
- Supervises the Lead Pilots and Base managers in the performance of their duties.
- Acts as the on-scene representative for all accidents/incidents occurring at their base. All action taken performing this duty will be coordinated with the Regional Aviation Director and Director of Operations. In a case where the Program Aviation Manager is the individual involved in the accident/incident, the Regional Aviation Director will assume these duties.
- Assists in coordinating base visits for potential pilot and mechanic candidates and provides input and recommendations to the corporate office as part of the hiring process.
- Assists the Base Lead Pilot in developing an Inadvertent Instrument Meteorological Conditions (IIMC) recovery procedure as described in Section 2 of this manual.
- Assists the Regional Aviation Director in coordinating the scheduling of pilots and aircraft.
- Attends hospital/program meetings or training as required.
- Completes and files all required reports and documents.
- Conducts a monthly base meeting.
- Coordinates with the Chief Pilot to ensure differences training is conducted for base pilots before placing a back-up aircraft in service. Furthermore, ensures relief pilots have completed differences training, when necessary, prior to assuming duties.
- Coordinates with the Regional Maintenance Manager the timely correction of mechanical irregularities and discrepancies.
- Coordinates with the Regional Aviation Director and Human Resource Department regarding employee disciplinary issues.
- Coordinates with the Regional Aviation Director to ensure compliance with FARs and company policies/procedures.
- Develops a Post Accident/Incident Plan (PAIP) in accordance with Section 2 of this General Operations Manual.
- Ensures that new pilots receive Air Methods 411 training prior to their first scheduled shift.
- Ensures that the Air Methods 411 system is being correctly utilized by pilots and corrects pilot entry errors as necessary.
• Ensures that all flight operations are conducted safely and in compliance with all FARs, General Operations Manual, Operations Specifications and company policies.

• Ensures that all pilot records are sent and received by the Chief Pilot using the 135forms@airmethods.com email address and all drug/alcohol program related forms are sent and received by the Air Methods’ Anti-drug and Alcohol Program Manager. Responsible to check for correctness before submission.

• Ensures that all respective pilots and mechanics read and comply with applicable bulletins.

• Ensures that an inventory of the aircraft and equipment is conducted prior to movement of a backup aircraft to a new base, and upon arrival at that new base. Faxes or emails a PDF copy of the completed inventory to the Regional Aviation Director.

• Ensures that each base has developed and is utilizing an adverse weather plan as outlined in the Adverse or Cold Weather Operations section of this manual.

• Ensures that in-service training for medical personnel takes place before a back-up aircraft is placed in service.

• Ensures that pilots receive base orientation as outlined in the Air Methods Pilot Training Program (PTP). Further, ensures pilots are scheduled for day shifts, sufficient to guarantee comfort with the local flying area prior to being scheduled for any night shifts.

• Ensures that revisions received from the certificate holder for the General Operations Manual/Operations Specifications, training manuals, and aircraft flight manuals are completed as required and ensures that the completed publication verification form is forwarded to the Regional Aviation Director.

• Ensures that the communication personnel training (Annex 34 of the PTP) is completed for all communications personnel at their program. The course completion documentation will be retained at the local program level.

• Keeps current the Communications Specialist List on the Air Methods Intranet for their respective programs. Reference Section 2 of this manual. Audit on a monthly basis.

• Ensures that the medical personnel crewmember training (Section 10) or coordination training (Section 2 of this manual) is completed for all medical personnel and training records are forwarded to the certificate holder.

• Ensures the medical personnel thoroughly clean the passenger compartment prior to movement of a back-up aircraft.

• Ensures the Regional Aviation Director is notified in the event of encounters with the FAA such as ramp checks; base visits, or request to contact ATC. Notification may be made by email or by phone during normal duty hours. The notification shall include but not be limited to location, date, time, Inspector name, areas covered and areas of concern.

• Monitors and ensures that the currency and qualification requirements are met for pilots at the program. This includes recurrent training, qualification check ride, annual medical, and other required documents. If a requirement will expire, then the Chief Pilot must be notified prior to the expiration.

• Monitors the attitude and performance of the pilots and mechanics assigned to their program to ensure that they comply with Air Methods’ policies and expectations.
• Participates as a member of the program’s management team to promote a successful operation.
• Performs the duties of the Aviation Safety Manager for the program including conducting two safety and operations audits at each base annually.
• Responsible for correcting compliance or safety issues when directed by the Director of Operations, Director of Maintenance, Chief Pilot, Aviation Compliance Manager, Regional Aviation Director, or Director of Safety.
• Responsible for daily operations of all program aviation operations. The Manager functions as a leader for the aviation team and is responsible for carrying out the mission, goals and objectives of the program and Air Methods. The Program Aviation Manager is responsible for assuring that all company employees make safety the number one priority in all activities.
• Responsible for directing and overseeing the completion of daily operational activities of the aviation staff. The Manager is responsible for a thorough knowledge of the program and Air Methods’ policies and procedures as well as meeting operational goals and objectives.
• Responsible for completing and keeping updated the “NVG List” on the “135 Aviation Op-Air Methods” page of the company intranet as described in Section 3 of this manual.
• Actively participates in the continuous improvement phase (level 4) of the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and
• Performs other duties as assigned.

1.3.9 Senior Lead Pilot
• Reports to the Regional Aviation Manager.
• Supervises the Lead Pilots and Pilots in the performance of their duties.
• Acts as the on-scene representative for all accidents/incidents occurring at their base. All action taken performing this duty will be coordinated with the Regional Aviation Director and Director of Operations. In a case where the Senior Lead Pilot is the individual involved in the accident/incident, the Regional Aviation Director will assume these duties.
• Assists in coordinating base visits for potential pilot candidates.
• Assists the Base Lead Pilot in developing an Inadvertent Instrument Meteorological Conditions (IIMC) recovery procedure as described in Section 2 and of this manual.
• Assists the Regional Aviation Director in coordinating the scheduling of pilots and aircraft.
• Attends hospital/program meetings or training as required.
• Completes and files all required reports and documents.
• Conducts a monthly base meeting.
• Coordinates with the Chief Pilot to ensure differences training is conducted for base pilots before placing a back-up aircraft in service. Furthermore, ensure relief pilots have completed differences training, when necessary, prior to assuming duties.
• Coordinates with the Regional Maintenance Manager the timely correction of mechanical irregularities and discrepancies.
• Coordinates with the Regional Aviation Director to ensure compliance with FARs and company policies/procedures.
• Develops a PAIP in accordance with Section 2 of this General Operations Manual.
• Ensures that new pilots receive Air Methods 411 training prior to their first scheduled shift.
• Ensures that the Air Methods 411 system is being correctly utilized by pilots and corrects pilot entry errors as necessary.
• Audits the DFL report on the Air Methods Intranet to ensure that they are being closed every 24 hours and audited by the Base Lead Pilot every 7 days.
• Ensures that all flight operations are conducted safely and in compliance with all Federal Aviation Regulations, General Operations Manual, Operations Specifications and company policies.
• Ensures that all pilot records are sent and received by the Chief Pilot using the 135forms@airmethods.com email address and all drug/alcohol program related forms are sent and received by the Air Methods’ Anti-drug and Alcohol Program Manager. Responsible to check for correctness before submission.
• Ensures that all respective pilots read and comply with applicable bulletins.
• Ensures that an inventory of the aircraft and equipment is conducted prior to movement if a backup aircraft to a new base, and upon arrival at that new base. Fax or email a copy of the completed inventory to the Regional Aviation Director.
• Ensures that each base has developed and is utilizing an adverse weather plan as outlined in the Adverse or Cold Weather Operations section of this manual.
• Ensures that in-service training for medical personnel takes place before a back-up aircraft is placed in service.
• Ensures that new/relief pilots receive base orientation as outlined in the Pilot Training Program, Annex 28 (Local Flying Area Curriculum Segment). Further, ensures new/relief pilots are scheduled for day shifts, sufficient to guarantee comfort with the local flying area prior to being scheduled for any night shifts.
• Ensures that revisions received from the certificate holder for the General Operations Manual/Operations Specifications, training manuals, and aircraft flight manuals are completed as required and ensure that the completed publication verification form is forwarded to the Regional Aviation Director.
• Ensures that the communication personnel training (Section 11) is completed for all communications personnel. The course completion documentation will be retained at the local program level.
• Keeps current the Communications Specialists List on the Air Methods Intranet for the respective programs. Reference Section 2 of this manual. Audit on a monthly basis.
• Ensures that the medical personnel crewmember training (Section 10) or coordination training (Section 2 of this manual) is completed for all medical personnel and training records are forwarded to the certificate holder.
• Ensures the medical personnel thoroughly clean the passenger compartment prior to movement of a back-up aircraft.
- Ensures the Regional Aviation Director is notified in the event of encounters with the FAA such as ramp checks; base visits, or request to contact ATC. Notification may be made by email or by phone during normal duty hours. The notification shall include but not be limited to location, date, time, Inspector name, areas covered and areas of concern.

- Monitors and ensures that the currency and qualification requirements are met for pilots at the program. This includes recurrent training, qualification check ride, annual medical, and other required documents. If a requirement will expire, then the Chief Pilot must be notified prior to the expiration.

- Monitors the performance of the pilots assigned to their program to ensure that they comply with Air Methods policies and expectations.

- Notifies the Regional Aviation Director of events that involve policy or regulatory violations or other pilot related matters.

- Participates as a member of the program’s management team to promote a successful operation.

- Performs the duties of the Aviation Safety Manager for the program including conducting two safety and operations audits at each base annually.

- Responsible for correcting compliance or safety issues when directed by the Director of Operations, Director of Maintenance, Chief Pilot, Aviation Compliance Manager, Regional Aviation Director, or Director of Safety.

- Responsible for daily operations of all program aviation operations. The Manager functions as a leader for the aviation team and is responsible for carrying out the mission, goals and objectives of the program and Air Methods. The Manager is responsible for assuring that all pilots make safety a priority.

- Responsible for directing and overseeing the completion of daily operational activities of the aviation staff. The Manager is responsible for a thorough knowledge of the program and Air Methods’ policies and procedures as well as meeting operational goals and objectives.

- Responsible for completing and keeping updated the “NVG List” on the “135 Aviation Op-Air Methods” page of the company intranet as described in Section 3 of this manual.

- Reviews and approves, as appropriate, all pilot expense, vacation, holiday, and workover/overtime reports.

- Actively participates in the continuous improvement phase (level 4) of the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

- Performs other duties as assigned.

1.3.10 Base Lead Pilot

- Reports to the Program Aviation Manager or Senior Lead Pilot.

- Supervises the applicable base line pilots in the performance of their duties.

- Conducts a monthly base meeting.

- Coordinates with the Program Aviation Manager concerning disciplinary actions in regards to their base pilots.
Coordinates with the Regional Aviation Director in the development of a local area definition as required by Operations Specifications Paragraph A021. Submits the local area definition to the Chief Pilot for approval.

Develops a local area reference manual as described in Section 2 of this manual under “Airport Requirements and Diagrams”.

Develops an Inadvertent Instrument Meteorological Conditions (IIMC) recovery procedure and post a copy at the base location and provides a copy in the aircraft.

Develops and keeps updated a base adverse weather plan, reference Adverse or Cold Weather Operations section of this manual, which outlines a plan of action to utilize and protect personnel and aircraft during adverse weather. Submits plan to Regional Aviation Director for review and approval.

Develops, posts, and maintains a “Local Area Hazards Map” at the base location.

Ensures that all aircraft are properly equipped for applicable operations.

Ensures that all pilot related reports and records are forwarded to the Program Aviation Manager. Responsible to check for correctness before submission.

Ensures that all pilots report to work with appropriate rest and are capable of performing the functions of a flight crewmember.

Ensures that load manifest forms are maintained and available for review at the base location for 30 days. After 30 days, ensures that they are discarded.

Ensures that medical equipment is weighed as specified in Section 2 of this manual.

Ensures that pilot scheduling complies with the crewmember flight time and duty period limitations and rest requirements per the FARs.

Ensures that pilots arriving for duty conduct shift change briefings with the pilot going off duty, with medical personnel, and with the appropriate communications facility. These briefings will include, but are not limited to; aircraft status, interrupted flights, hazards map updates, forecast and current weather, medical interior issues, pending missions (PR’s, training, medical), ride along, sterile cockpit, and any other pertinent information as appropriate.

Ensures that revisions received from the certificate holder for the General Operations Manual/Operations Specifications and training manuals are completed as required and ensures that the completed publication verification form is forwarded to the Program Aviation Manager.

Ensures that the Air Methods 411 system is being correctly utilized by pilots.

Audits Air Methods 411 flight log entries at the end of the month and reports errors to Pilots or the Program Aviation Manager for correction.

Ensures that scheduling for holidays and safety/training meetings is done in a manner that ensures equitable treatment for each person.

Ensures that sufficient and proper flight time and duty records are retained at the base location to prove flight crewmembers meet currency requirements per the FARs.
• Ensures the Regional Aviation Director is notified in the event of encounters with the FAA such as ramp checks; base visits, or request to contact ATC. Notification may be made by email or by phone during normal duty hours. The notification shall include but not be limited to location, date, time, Inspector name, areas covered and areas of concern.

• In the absence of an assigned Base Safety Manager, acts in the capacity of and performs the duties of the Base Safety Manager. The duties of the Base Safety Manager can be found in the Air Methods’ SMS Policy Manual.

• Monitors and ensures that the currency requirements are met for pilots at the base. This includes recurrent training, qualification check ride, annual medical, and other required documents. If a requirement will expire, then the Program Aviation Manager must be notified prior to the expiration.

• Responsible for correcting compliance or safety issues when directed by the Director of Operations, Chief Pilot, Aviation Compliance Manager, Director of Safety, Program Aviation Manager, or Aviation Compliance Evaluators.

• Responsible for daily operations of all aviation services at their respective base. The Lead Pilot functions as a leader for his/her base pilots and is responsible for carrying out the mission, goals, and objectives of Air Methods. The Lead Pilot is responsible for assuring that all aviation employees make safety the number one priority in all activities.

• Responsible for directing and overseeing the completion of daily operational activities of the base aviation staff.

• Responsible for the coordination of pilot scheduling at their base and assists the Aviation Manager in coordinating operations and training.

• Responsible for thorough knowledge of policies and procedures as well as meeting operational goals and objectives.

• Responsible for ensuring the night vision goggles are maintained according to the procedures in the NVG section of this manual.

• Actively participates in the continuous improvement phase (level 4) of the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

• Performs other duties as assigned.

1.3.11 Pilot-In-Command (PIC)

• Reports to the Base Lead Pilot.

• Final authority for the safety of passengers, cargo, and medical personnel, and has operational control for all flights which they initiate.

• Exercises second tier operational control as defined in Section 2 of this manual.

• Accomplishes and properly documents preflight inspections and inspects maintenance documents, to include status sheet, upon arrival for duty to determine the airworthiness of the aircraft. Reports any discrepancies to maintenance and documents appropriately.

• Except during refueling operations as described in this manual, the pilot will not go beyond the rotor arc of a running helicopter.
• Keeps the aircraft exterior clean and assists in keeping the base of operations presentable. Cockpit cleanliness and organization are the sole responsibility of the pilot.
• Attends base monthly meetings and program training activities when duty time allows.
• Completes all training and qualification events required to maintain currency as dictated in FAR Part 135.
• Completes the CTS (Computer Training Systems) programs by the deadlines set out by the certificate holder.
• Conducts all flight operations in compliance with the FARs, the aircraft flight manual, this General Operations Manual, Operations Specifications, and Air Methods’ policies/procedures.
• Ensures full and proper completion of all flight/maintenance logs, Load Manifest forms, Record of Airman Flight and Duty Time forms in Pilot 411, and the securing of the aircraft at the completion of the flight. The Record of Airman Flight and Duty Time form is required to be properly completed and submitted to the Certificate Holder by the 10th day of the following month.
• Ensures proper briefing of passengers per FAR 135.117 and Section 2 of this manual.
• Ensures that a shift change briefing is conducted with the pilot going off duty, with medical personnel, and with the appropriate communications facility. These briefings will include, but are not limited to; aircraft status, interrupted flights, hazards map updates, forecast and current weather, medical interior issues, pending missions (PR’s, training, medical), ride along, sterile cockpit, and any other pertinent information as appropriate.
• Ensures their assigned aircraft navigation charts and documents are current and up to date.
• Ensures the Regional Aviation Director is notified in the event of encounters with the FAA such as ramp checks; base visits, or request to contact ATC. Notification may be made by email or by phone during normal duty hours. The notification shall include but not be limited to location, date, time, Inspector name, areas covered and areas of concern.
• Updates Out of Service status in pilot 411 each time the status of the base or aircraft changes.
• Maintains positive customer relations.
• Notifies the Chief Pilot or in his absence, the Director of Operations whenever a medical deficiency exists that would affect the safety of the flight.
• Performs a complete 360 degree walk around, to include inspection of the tail rotor, prior to entering the cockpit for flight and upon completion of each flight.
• Required to duty in on the Air Methods 411 system at the beginning of each shift and duty out at the end of each shift. If computer access isn’t available the pilot will call the OCC for guidance.
• Required to complete Air Methods 411 pilot logs prior to the end of each shift. If computer access is not available, the pilot log may be completed as soon as possible when computer access is available, but must be done as soon as possible. The Operational Control Center Personnel time permitting may enter a flight for the pilot.
• Submits an Air Methods 411 flight release prior to the first flight of each shift. If computer access isn’t available the pilot will call the Operational Control Center for submission of the flight release.

• Advises the Communications Center of any issues (including maintenance) that would take an aircraft out of service for any significant period of time.

• Responsible for becoming familiar with all pertinent information regarding all flights, including, but not limited to NOTAMs, TFRs, weather information, etc.

• Completes all flight assignments in a safe and professional manner. The PIC is responsible for assuring that all crewmembers assigned to their aircraft make safety the number one priority in all activities.

• Responsible for correcting compliance or safety issues when directed by the Director of Operations, Chief Pilot, Aviation Compliance Manager, Director of Safety, Program Aviation Manager, Aviation Compliance Evaluators, or Lead Pilot.

• Responsible for maintaining their qualifications in keeping with the requirements outlined in the FARs, the Air Methods’ Training Manual, and this General Operations Manual for their assigned position.

• Responsible for protecting Air Methods’ aircraft from damage and weather. When weather dictates and facilities are available, aircraft will be moved to a hangar.

• Reports potentially hazardous meteorological conditions and irregularities of communications or navigation facilities to appropriate ground radio station as soon as practicable.

• Submits copies of any new or reissued Airman’s Certificate or Medical Certificate to the Program Aviation Manager who will scan or convert it to a PDF file and forward it electronically to the Chief Pilot using the 135forms@airmethods.com email address using the proper naming convention.

• Supervises loading of passengers, baggage, and fuel and determines that weight and balance remains within the limitations contained in the aircraft flight manual for all flight operations (Part 91 and 135).

• Will not fly an aircraft with a known deficiency until the deficiency is cleared in writing by maintenance or deferred under the MEL.

• Will utilize all safety equipment issued, furnished, or installed in the aircraft for all flights when operating an Air Methods aircraft. Examples of these would include flight helmets, flight suits, HTAWS, Radar Altimeter and NVG’s. NVG’s will be mounted on the helmet during night operations and will be flipped up when not required.

• When performing a PAIP drill, will contact the Operational Control Center to notify them that it is practice only.

• Actively participates in the continuous improvement phase (level 4) of the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

• Performs other duties as assigned.
1.3.12 Director of Maintenance

- Reports to the President of Domestic Air Medical Services.
- Supervises Regional Maintenance Directors and Fleet Maintenance Senior Manager.
- Completes the required MIS reports and forwards them to the FAA.
- Ensures Air Methods' aircraft are maintained in an airworthy condition.
- Ensures all necessary work records and log books, including certification in the aircraft permanent maintenance records, that the aircraft is approved for return to service.
- Ensures compliance with applicable Federal Aviation Regulations, manufactures maintenance procedures, airworthiness directives and service bulletins/service letters issued by Air Methods certificate management team.
- Ensures proper training of all maintenance technicians.
- Ensures that all maintenance technicians are certified and supervised according to the requirements specified in the Federal Aviation Regulations.
- Maintains a close liaison with manufacturer’s representatives, parts supply vendors, repair facilities, and the FAA.
- Makes available to maintenance personnel; this General Maintenance Manual, the applicable manufacturer’s maintenance manuals, service bulletins, service letters, airworthiness directives and any other required technical data. Ensures all maintenance personnel have a thorough knowledge of all of these items.
- Provides the current airworthiness status of the aircraft and the forecast down times to facilitate maintenance scheduling and ensure timely deferral or correction of aircraft discrepancies.
- Responsible for issuing bulletins and periodically reviewing these for continued validity and pertinence.
- Designated to apply for and receive Operations Specifications per FAR 119.
- Actively participates in the continuous improvement phase (level 4) of the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.
- Performs other duties as assigned.
1.4 Acronyms and Terms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAIP</td>
<td>Approved Aircraft Inspection Program</td>
</tr>
<tr>
<td>ACTT</td>
<td>Aircraft Total Time</td>
</tr>
<tr>
<td>A/C</td>
<td>Aircraft</td>
</tr>
<tr>
<td>ACEB</td>
<td>Alert Commercial Engine bulletin</td>
</tr>
<tr>
<td>ACFT</td>
<td>Aircraft</td>
</tr>
<tr>
<td>AD</td>
<td>Airworthiness Directive</td>
</tr>
<tr>
<td>AFD</td>
<td>Airport and Facilities Directory</td>
</tr>
<tr>
<td>A/F</td>
<td>Airframe</td>
</tr>
<tr>
<td>AGL</td>
<td>Above Ground Level</td>
</tr>
<tr>
<td>A & P</td>
<td>Airframe & Powerplant Mechanic</td>
</tr>
<tr>
<td>AIDMOR</td>
<td>Accident, Incident, Damage, Malfunction, Operations Report</td>
</tr>
<tr>
<td>AIM</td>
<td>Airmen’s Information Manual</td>
</tr>
<tr>
<td>AFM</td>
<td>Airplane Flight Manual</td>
</tr>
<tr>
<td>AMC</td>
<td>Air Methods Corporation</td>
</tr>
<tr>
<td>APIS</td>
<td>Advanced Passenger Identification System</td>
</tr>
<tr>
<td>ASB</td>
<td>Alert Service Bulletin</td>
</tr>
<tr>
<td>ASOS</td>
<td>Automatic Surface Observation System</td>
</tr>
<tr>
<td>ASR</td>
<td>Airport Surveillance Radar</td>
</tr>
<tr>
<td>ATC</td>
<td>Air Traffic Control</td>
</tr>
<tr>
<td>ATIS</td>
<td>Automated Terminal Information System</td>
</tr>
<tr>
<td>CEB</td>
<td>Commercial Engine Bulletin</td>
</tr>
<tr>
<td>CERTIFICATE HOLDER</td>
<td>Refers to Air Methods</td>
</tr>
<tr>
<td>CHDO</td>
<td>Certificate Holder’s District Office</td>
</tr>
<tr>
<td>CL</td>
<td>Calendar</td>
</tr>
<tr>
<td>CSL</td>
<td>Commercial Service Letter</td>
</tr>
<tr>
<td>CTAF</td>
<td>Common Traffic Advisory Frequency</td>
</tr>
<tr>
<td>CTS</td>
<td>Computer Training Systems</td>
</tr>
<tr>
<td>C/W</td>
<td>Complied With</td>
</tr>
<tr>
<td>CYA</td>
<td>Conform Your Aircraft</td>
</tr>
<tr>
<td>CYC or CYL</td>
<td>Cycle</td>
</tr>
<tr>
<td>DESIGNEE</td>
<td>Refers to a person designated to act in the capacity of another within a defined scope. The designees for the Director of Operations are the Chief Pilot, Aviation Compliance Manager, Regional Aviation Director, and Regional Aviation Manager/ Senior Lead Pilot for each respective program/base. The designees for the Director of Maintenance are the Regional Maintenance Directors, Maintenance Manager for each respective program or the on call Mechanic for that base or program.</td>
</tr>
<tr>
<td>DH</td>
<td>Decision Height</td>
</tr>
<tr>
<td>ENG</td>
<td>Engine</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FAR</td>
<td>Federal Aviation Regulation</td>
</tr>
<tr>
<td>FBO</td>
<td>Fixed Base Operator</td>
</tr>
<tr>
<td>FC</td>
<td>Flight Cycle</td>
</tr>
<tr>
<td>F/C</td>
<td>Fuel Control</td>
</tr>
<tr>
<td>FLT</td>
<td>Operational Check Flight</td>
</tr>
<tr>
<td>FSS</td>
<td>Flight Service Station</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>G/B</td>
<td>Gear Box</td>
</tr>
<tr>
<td>GOV</td>
<td>Governor</td>
</tr>
<tr>
<td>GOM</td>
<td>General Operations Manual</td>
</tr>
<tr>
<td>HAA</td>
<td>Height Above Airport</td>
</tr>
<tr>
<td>HAA</td>
<td>Helicopter Air Ambulance</td>
</tr>
<tr>
<td>HAT</td>
<td>Height Above Touchdown</td>
</tr>
<tr>
<td>HEMS</td>
<td>Helicopter Emergency Medical Services OBSOLETE</td>
</tr>
<tr>
<td>HNVG0</td>
<td>Helicopter Night Vision Goggle Operations</td>
</tr>
<tr>
<td>HRS</td>
<td>Hours</td>
</tr>
<tr>
<td>IA</td>
<td>Inspection Authorization</td>
</tr>
<tr>
<td>IAW</td>
<td>In Accordance With</td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument Flight Rules</td>
</tr>
<tr>
<td>IMC</td>
<td>Instrument Meteorological Conditions</td>
</tr>
<tr>
<td>IIMC</td>
<td>Inadvertent Instrument Meteorological Conditions</td>
</tr>
<tr>
<td>ILS</td>
<td>Instrument Landing System</td>
</tr>
<tr>
<td>INSP</td>
<td>Inspection</td>
</tr>
<tr>
<td>LAHSO</td>
<td>Land and Hold Short Operations</td>
</tr>
<tr>
<td>LL</td>
<td>Life Limited</td>
</tr>
<tr>
<td>LOX</td>
<td>Liquid Oxygen System</td>
</tr>
<tr>
<td>MDA</td>
<td>Minimum Descent Altitude</td>
</tr>
<tr>
<td>MEA</td>
<td>Minimum En Route Altitude</td>
</tr>
<tr>
<td>MEL</td>
<td>Minimum Equipment List</td>
</tr>
<tr>
<td>METAR</td>
<td>French acronym translates as Aviation Routine Weather Report</td>
</tr>
<tr>
<td>MIS</td>
<td>Mechanical Interruption Summary</td>
</tr>
<tr>
<td>MM</td>
<td>Maintenance Manual</td>
</tr>
<tr>
<td>M/R</td>
<td>Main Rotor</td>
</tr>
<tr>
<td>MOCA</td>
<td>Minimum Obstruction Clearance Altitude</td>
</tr>
<tr>
<td>MSA</td>
<td>Minimum Safe Altitude</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean Sea Level</td>
</tr>
<tr>
<td>NAV0I0D</td>
<td>Navigation Aid</td>
</tr>
<tr>
<td>NDB</td>
<td>Non-directional Radio Homing Beacon</td>
</tr>
<tr>
<td>NTSB</td>
<td>National Transportation Safety Board</td>
</tr>
<tr>
<td>NVG</td>
<td>Night Vision Goggle</td>
</tr>
<tr>
<td>OC</td>
<td>On Condition</td>
</tr>
<tr>
<td>OH</td>
<td>Overhaul</td>
</tr>
<tr>
<td>OPS0CK</td>
<td>Operational Check</td>
</tr>
<tr>
<td>OPERATOR</td>
<td>Refers to the Certificate Holder</td>
</tr>
<tr>
<td>PAIP</td>
<td>Post Accident/Incident Plan</td>
</tr>
<tr>
<td>PAR</td>
<td>Precision Approach Radar</td>
</tr>
<tr>
<td>PCW</td>
<td>Previously Complied With</td>
</tr>
<tr>
<td>PMI</td>
<td>Principal Maintenance Inspector</td>
</tr>
<tr>
<td>PIC</td>
<td>Pilot in Command</td>
</tr>
<tr>
<td>PIREP</td>
<td>Pilot Weather Report</td>
</tr>
<tr>
<td>PMSP</td>
<td>Pilot’s Maintenance and Servicing Procedure</td>
</tr>
<tr>
<td>POH</td>
<td>Pilot’s Operating Handbook</td>
</tr>
<tr>
<td>RFM</td>
<td>Rotorcraft Flight Manual</td>
</tr>
<tr>
<td>RT</td>
<td>Retirement</td>
</tr>
<tr>
<td>SB</td>
<td>Service Bulletin</td>
</tr>
<tr>
<td>SDR</td>
<td>Service Difficulty Report</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>SI</td>
<td>Service Instruction</td>
</tr>
<tr>
<td>SMS</td>
<td>Safety Management System</td>
</tr>
<tr>
<td>STC</td>
<td>Supplemental Type Certificate</td>
</tr>
<tr>
<td>SIC</td>
<td>Second in Command</td>
</tr>
<tr>
<td>SOIR</td>
<td>Simultaneous Operations on Intersecting Runways</td>
</tr>
<tr>
<td>TAF</td>
<td>Terminal Aerodrome Forecasts</td>
</tr>
<tr>
<td>TB</td>
<td>Technical Bulletin</td>
</tr>
<tr>
<td>TCC</td>
<td>Technical Compliance Certification</td>
</tr>
<tr>
<td>TCU</td>
<td>Torque Control Unit</td>
</tr>
<tr>
<td>TFR</td>
<td>Temporary Flight Restrictions</td>
</tr>
<tr>
<td>T/R</td>
<td>Tail Rotor</td>
</tr>
<tr>
<td>TSI</td>
<td>Time Since Inspection</td>
</tr>
<tr>
<td>TT</td>
<td>Total Time</td>
</tr>
<tr>
<td>TSN</td>
<td>Time Since New</td>
</tr>
<tr>
<td>TSO</td>
<td>Time Since Overhaul</td>
</tr>
<tr>
<td>UNICOM</td>
<td>Universal Communications</td>
</tr>
<tr>
<td>VFR</td>
<td>Visual Flight Rules</td>
</tr>
<tr>
<td>VOR</td>
<td>VHF Omnidirectional Range</td>
</tr>
<tr>
<td>VMC</td>
<td>Visual meteorological conditions</td>
</tr>
<tr>
<td>W & B</td>
<td>Weight and Balance</td>
</tr>
<tr>
<td>XMSN</td>
<td>Transmission</td>
</tr>
</tbody>
</table>
2. Flight Operations – General

[119.9, 119.43, 135.79]

2.1 Operational Control

Air Methods utilizes a two-tier system of operational control. The first tier consists of managers and directors listed in Operations Specifications Paragraph A006, the Air Methods 411 Pilot computer system, trained flight followers, and the Operational Control Center (OCC). Satellite tracking allows real-time position reports for flight locating requirements.

The 411 Pilot computer system verifies a pilot meets flight and rest requirements in addition to being properly trained and qualified through a pilot-submitted flight release. Upon validation of pilot requirements, the 411 system issues an electronic flight release valid for the duration of the pilot’s shift.

Air Methods utilizes two types of off-site communication centers for flight following. Hospital Based Systems (HBS) are typically located within the geographic area of their bases and are staffed with non Air Methods employees. Community Based Systems are staffed with Air Methods employees and not typically located in the same geographical location as their bases; they are centralized in Omaha, NE (AirCom) and St. Louis, MO (Arch).

Communications centers are delegated the authority to flight follow Air Methods aircraft. They are responsible for filing company flight plans prior to each flight and tracking the aircraft until flight completion. Immediate notification to the OCC is required for any unplanned deviation such as an accident, incident, aircraft damage, injury to a passenger or crew member, an overdue aircraft, or fuel associated issues related to reported fuel loads vs. estimated flight times. Communications centers may also relay hazardous weather information received from the OCC to their flight crews. In addition, the following are examples of possible reasons to elevate concerns to the OCC:

- General safety concerns
- Unplanned fuel stops
- Weather concerns
- Maintenance issues
- Indicators of inadequate crew rest

All communications center personnel who intake flight requests and/or flight follow Air Methods aircraft must be trained according to the Air Methods’ FAA accepted Communications Specialist Training Program. This training program will be administered by the appropriate aviation manager or Senior Lead Pilot who has responsibility for the communications center. Course completion documentation will be retained at the local program level. Additionally, the appropriate or Senior Lead Pilot shall keep an updated list of the names of all currently trained and utilized Communications Specialists in the “Comm. Spec. List” on the “135 Aviation Ops-Air Methods” page of the Air Methods Intranet.

The Operational Control Center, located at Air Methods’ headquarters in Colorado, ensures a sustainable system of operational control through satellite tracking, computerized reporting, and the Flight Management System. Their dual responsibilities include safety of flight and operational control.
Operational Control Specialists are trained according to Air Methods’ FAA accepted Communications Specialist and Operational Control Specialist training programs.

The OCC provides flight monitoring which includes identifying hazards to aircraft in flight and ensuring communications centers submit required flight plans and update position reports.

The Operational Control Center monitors all computerized flight plans described in this manual. Controls are in place to alert the OCC when a satellite-tracked aircraft departs without a flight plan.

The second tier of operational control consists of the operational control the Pilot in Command (PIC) exercises as the final authority over the operation of the aircraft. The PIC determines whether or not a flight can be accepted, initiated, conducted, or terminated and makes tactical and dynamic in-flight decisions in accordance with the Code of Federal Aviation Regulations and the Air Methods General Operations Manual and Operations Specifications.

Only a PIC who is a direct employee of Air Methods may exercise this second tier Operational Control over any Air Methods flight. In the event the PIC is unsure whether or not a flight assignment can be conducted in accordance with Federal Aviation Regulations or the Air Methods General Operations Manual and Operations Specifications, the PIC will contact a manager listed in paragraph A006 of the Operations Specifications or the Operational Control Center for additional guidance and input.

Federal Aviation Regulations require that Air Methods be properly named and identified as the company providing the air transportation and therefore must be included in all printed or advertising matter offered to the public. This ensures the public is informed of the identification of the Federal Aviation Administration certified and authorized operator of the aircraft. Aircraft operated on the Air Methods’ Air Carrier Certificate shall have “Operated By Air Methods” displayed on the aircraft such that it is legible and clearly visible from the outside of the aircraft to a person standing on the ground at any time except during flight. At no time shall any non-certificated entity attempt to exercise Operational Control, nor hinder in any way, Air Methods’ oversight and/or exercising of Operational Control of any operations carried out under Air Methods’ Certified Air Carrier Certificate (QMLA253U).

Hospitals or other agencies have the right to request flight operations of Air Methods’ aircraft and may request that Air Methods respond for any mission. A request from a hospital transport call center is an authorization for Air Methods to proceed with evaluating, in accordance with established and authorized procedures specific to Air Methods’ Air Carrier Certificate, whether a flight can be completed. The hospital transport call center has no authority to override the authority of Air Methods, or the pilot’s authority to refuse any mission request due to weather, maintenance, regulatory limitations, or other flight safety issues. At no time during a response to a medical flight will speed into action criteria be allowed to compromise safety.

All employees, methods, equipment, and facilities used or employed by Air Methods will be under Air Methods’ operational supervision and control at all times. Air Methods personnel may be requested to, but shall not be required to assist in any patient care or patient handling except to the extent of providing patient transportation.

Pilots, mechanics, and other Air Methods personnel will abide by all Air Methods personnel policies as well as hospital or program rules and policies provided in written form to, and approved by Air Methods, concerning conduct and appearance. Air Methods shall retain full authority and rights to unilaterally exercise its right to hire, discipline, or remove Air Methods personnel from assignment. Compliance with the Air Methods General Operations Manual and Operations Specifications is mandatory. Failure to adhere to the certificate holder’s directions and instructions may be subject to legal enforcement action by the FAA.
2.2 Accident Notification Requirements

[135.23]

From the time any person boards the aircraft with the intention to fly until all such persons have disembarked; the occurrence of any of the following requires Air Methods to notify the National Transportation Safety Board (NTSB):

- An aircraft accident or any of the following listed serious incidents occur:
 - Flight control system malfunction or failure;
 - Inability of any required flight crewmember to perform normal flight duties as a result of injury or illness;
 - Failure of any internal turbine engine component that results in the escape of debris other than out the exhaust path;
 - In-flight fire;
 - Aircraft collision in flight;
 - Damage to property, other than the aircraft, estimated to exceed $25,000 for repair (including materials and labor) or fair market value in the event of total loss, whichever is less.
 - For large multiengine aircraft (more than 12,500 pounds maximum certificated takeoff weight):
 - In-flight failure of electrical systems which requires the sustained use of an emergency bus powered by a back-up source such as a battery, auxiliary power unit, or air-driven generator to retain flight control or essential instruments;
 - In-flight failure of hydraulic systems that results in sustained reliance on the sole remaining hydraulic or mechanical system for movement of flight control surfaces;
 - Sustained loss of the power or thrust produced by two or more engines; and
 - An evacuation of an aircraft in which an emergency egress system is utilized.
 - Release of all or a portion of a propeller blade from an aircraft, excluding release caused solely by ground contact;
 - A complete loss of information, excluding flickering, from more than 50 percent of an aircraft’s cockpit displays known as:
 - Electronic Flight Instrument System (EFIS) displays;
 - Engine Indication and Crew Alerting System (EICAS) displays;
 - Electronic Centralized Aircraft Monitor (ECAM) displays; or
 - Other displays of this type, which generally include a primary flight display (PFD), primary navigation display (PND), and other integrated displays;
 - Airborne Collision and Avoidance System (ACAS) resolution advisories issued either:
 - When an aircraft is being operated on an instrument flight rules flight plan and compliance with the advisory is necessary to avert a substantial risk of collision between two or more aircraft; or
 - To an aircraft operating in class A airspace.
 - Damage to helicopter tail or main rotor blades, including ground damage, that requires major repair or replacement of the blade(s);
• Any event in which an operator, when operating an airplane as an air carrier at a public-use
airport on land:
 ○ Lands or departs on a taxiway, incorrect runway, or other area not designed as a runway;
or
 ○ Experiences a runway incursion that requires the operator or the crew of another aircraft
 or vehicle to take immediate corrective action to avoid a collision.
• An aircraft is overdue and is believed to have been involved in an accident.

Air Methods personnel will notify the Operational Control Center and they will notify certificate management
(DO, DOM, Chief Pilot) who will, in turn, notify the NTSB and the Regional Operations Center (ROC). This
will be reported in the most expeditious means available as follows:

• Insofar as possible, the report shall contain the following information:
 ○ Location, time, and date of the accident
 ○ Number of persons involved
 ○ Nature and extent of injuries if any
 ○ Brief description of circumstance(s) surrounding the accident
• When possible, the report should also include:
 ○ Type, nationality, and registration mark of the aircraft
 ○ Name of the owner and operator of the aircraft
 ○ Name of the pilot in command
 ○ Last point of departure and point of intended landing of the aircraft
 ○ Position of the aircraft in relation to an easily defined geographical point
 ○ Number of persons aboard, number of fatalities, and number of seriously injured
 ○ Nature of the accident, the weather, and the extent of damage so far as is known
 ○ A description of any explosives, radioactive materials, or any other dangerous articles
 carried.
• The pilot shall discuss the accident only with the assigned law enforcement officer(s) or
 official(s) from the Federal Aviation Administration or National Transportation Safety Board. If
 the Press, or anyone else seeks information as to cause, or name of persons involved, refer
 them to the Vice President of the appropriate division or region.

2.3 Adverse or Cold Weather Operations

[135.227]

Except for airplane pilots flying airplanes approved for flight into known icing conditions, pilots shall not fly
into known icing conditions under VFR or into known or forecast icing conditions under IFR. However, if the
current weather reports and briefing information obtained by the PIC indicate that the forecast conditions
that would otherwise prohibit the flight will not be encountered because of changed weather conditions
since the forecast, the above planning restrictions based on forecast conditions do not apply. The PIC shall
not exceed the aircraft limitation as given in the applicable aircraft flight manual.

Any pilot initiating or continuing a flight based on a belief that “forecast conditions that would otherwise
prohibit a flight will not be encountered…” must do so with great care. The decision to continue an operation
will not be based solely on PIREP information. The decision shall be based on current METAR, AWOS,
ASOS, ATIS, or amended forecast reports. For example, an area of wide spread freezing rain that had been
previously forecast, could be considered to be no longer a threat if METAR, AWOS, ASOS, ATIS or amended forecast reports indicated the conditions were no longer present along the planned route of flight.

For VFR or IFR in VMC operations, avoiding an area of known icing conditions can be accomplished by flying clear of the conditions that would result in airframe or propeller/rotor blade icing, i.e. a forecast or report for icing in clouds or precipitation would allow a VFR flight so long as the pilot could operate clear of clouds and precipitation. Avoiding such conditions under IMC would be nearly impossible.

For IFR operations in IMC, forecast icing conditions are known icing conditions. Unless the aircraft being operated is equipped and certified for flight into these conditions, the operation is prohibited.

Helicopter pilots encountering icing conditions en route, shall comply with the procedures for deteriorating weather condition, found in Section 2 of this manual.

Airplane pilots encountering severe icing should request an altitude change, diversion to another destination, or change to a route in order to escape the icing conditions and avoid further encounters.

In order to protect the medical equipment, supplies, avionics, and other interior furnishings from the cold, a heater may be placed in a safe location inside the patient cabin when cold weather (outside air temperature of 50° F or less) occurs. This is only during ground, non-operating conditions.

If the aircraft is equipped with Tanis heaters, they should be utilized on the ground when the outside air temperature is 40° F or less.

During periods of low temperature operation, the PIC will notify the Communications Center of possible delays in response time due to increased engine and/or transmission warm-up times.

Flight into areas of embedded thunderstorms or squall lines is prohibited.

Engine anti-ice, if installed, will be used in accordance with the aircraft flight manual. Special caution should be used when operating in close proximity to other aircraft as snow, ice particles, or moisture may be blown onto critical aircraft components; dry snow may melt and refreeze. If there is any doubt that the aircraft is free of contamination, it should be shut down and re-checked or de-iced.

Program Aviation Managers shall (if not already available) coordinate with the local FBO and/or airport authority to secure a suitable hangar facility for limited use when deteriorating weather conditions dictate.

If available, consideration should be given to obtaining nearby adequate shelter for the Pilot and Medical Crew for protection from the elements and/or temporary staging of flight operations should conditions warrant due to rapidly changing weather.

If providing temporary quarters for the staging of flight operations, consideration should be given to: communications between the crew and their dispatching center, access to weather information systems and NOTAM systems, and access to meal facilities.

The Lead Pilot shall develop, in writing, the procedures for each base of operations under his/her charge. The procedures shall include, as a minimum, the following.

The on-duty PIC shall retain responsibility for maintaining an accurate and continuous watch on weather conditions and exercise this policy and local procedures when conditions warrant.

The PIC will inform the medical crew and the communications specialists of any adverse weather and potential relocation of the aircraft, if appropriate.

As a minimum, the Aviation Manager shall include the following within the local procedures:
• Wind: In the case of helicopters, when the forecast wind is to reach or exceed the starting limits of the aircraft (as defined in the limitations section of the appropriate Aircraft Flight Manual) the aircraft will have its Main Rotor Blades and Tail Rotor Blades restrained, and be secured to the deck. For helicopters and fixed wing, when the forecast wind is to reach 40 knots, the aircraft shall be placed in a hangar.

• Precipitation: When the forecast contains freezing rain, hail, or heavy snow, the aircraft will be safely relocated prior to the occurrence of the forecast conditions.

• Proximity/Movement: When a weather system’s movement or proximity of the hazardous weather requires an exercise of caution to protect the aircraft from potential damage, the PIC shall safely relocate the aircraft to a safe location as outlined in the local procedures.

Once the hazardous weather conditions have diminished to the point that there is no foreseeable negative impact on the aircraft, the PIC will retain the responsibility of making the decision to return to the base of operations as appropriate.

2.4 Aircraft Training / Currency

[135.247, 135.299]

At any time, a pilot may request additional training. This request shall be coordinated through the appropriate chain of command with final approval from the Chief Pilot. Additional training flights shall be documented appropriately.

If a PIC has not flown a specific make, model, or series aircraft in the last 60 days they will, as a minimum, accomplish one start and three takeoffs and landings. If a PIC has not flown a specific make, model, or series aircraft in the last 90 days they will notify the Regional Aviation Manager to determine if any training is needed for the pilot to perform competently and safely in that aircraft. It is essential for the pilot to be knowledgeable of aircraft lighting and proficient with avionics and aircraft systems. This flight shall be coordinated through the pilot’s immediate supervisor. Additional currency flights shall be coordinated through the appropriate chain of command with final approval from the Chief Pilot (or designee).

A PIC who has not flown over a route and into an airport/heliport within the preceding 90 days will:

• Study the appropriate IFR enroute or VFR aeronautical charts.

• Study the destination airport/heliport diagrams, including alternate airports/heliports.

• Study the appropriate IFR approach charts for destination and alternate, if applicable.

2.5 Airport Requirements and Diagrams

[135.229]

Pilots will verify each airport/heliport is adequate for the proposed day or night operation. The following are requirements and procedures for night operations:

• Before takeoff and landing, each pilot will determine the wind direction via a lighted wind indicator, or communication with ground personnel. For takeoff the pilot may use their own observation of wind direction.

• Boundary or runway lights must clearly show the limits of the landing and takeoff area.
• Night means the period from the end of evening civil twilight to the beginning of morning civil twilight, as published in the American Air Almanac.
• Table of sunrise, sunset, and civil twilight are available on the web site of the U.S. Naval Observatory (usno.navy.mil).

At each base from which aircraft operations are required to private airstrips, unimproved landing areas, helipads, or heliports which are not included in an AFD or comparable publication, the Lead Pilot will develop and keep current a collection of airport/heliport/other landing areas diagrams.

At a minimum, this collection will include a graphic depiction (photographic or hand drawn) of the landing area, available landing area, lighting, obstructions, refueling information, and other appropriate data. Each pilot will consult this information before beginning an operation to or from one of these private airstrips, unimproved landing areas, helipads, or heliports.

2.6 Before Start / Before Takeoff Confirmation Check

A checklist will be provided and each pilot will utilize the checklist for all operations.

A before start/before takeoff confirmation checklist will be provided and affixed to each instrument panel in plain view to the pilot. The confirmation checklist will include essential items that will be confirmed by the pilot before each start and takeoff. Prior to start and liftoff, each pilot will verbally challenge him or herself and respond verbally to each item on the confirmation checklist to ensure that each item is complete.

2.7 Carriage of Weapons

Passengers (including patients) shall not carry deadly or dangerous weapons anywhere aboard Air Methods’ aircraft. Local, state, or federal employees (i.e. law enforcement officers) authorized to carry weapons are permitted to carry those weapons including firearms and tasers, but not including pepper spray, mace or other aerosol products on board Air Methods’ aircraft.

Air Methods’ employees shall not carry firearms aboard Air Methods’ aircraft.

2.8 Cell Phones / Portable Electronic Devices (PED) – Utilization

With the exception of an In-flight emergency, the use of personal electronic devices during flight related activities is limited to use in non-transmit mode (airplane mode) during cruise flight for the purpose of accessing resource materials related to patient care. The pilot’s PED shall remain off at all times during operation of the aircraft with the exception of an emergency and the list below.

Personal electronic devices (cell phones/laptops/tablets/etc.) belonging to the medical crew may be turned on at a point 100 feet beyond the circumference of the rotor disc during hot operations as they represent an important means of communication with other crew. The reverse procedure will apply when approaching the aircraft to hot-load a patient. Deviation from this rule is allowed for emergencies and critical communication with the respective communications center or medical control.
PEDs (cell phones/laptops/tablets/etc.) belonging to the pilot may be used in and around running AC under the following circumstances.

- Critical communication - with your respective communications center
- Obtaining an IFR Clearance
- Contact with ATC

While using a checklist and you are interrupted for any reason, you must restart the checklist from the beginning.

2.9 Conflict of Interest

Pilots shall not engage in business or any other activity to the extent that their performance as a pilot for the company suffers, their availability degrades or the best interest of Air Methods becomes secondary to their outside activity.

2.10 Coordination Training – Pilots and Medical Personnel

NOTE: This paragraph is applicable to medical personnel who have not been trained per the Air Methods’ Crewmember Training Program.

Medical personnel will receive annual training on at least the following subjects as per 8900.10:

- Physiological aspects of flight
- Patient loading and unloading
- Safety in and around the aircraft
- Passenger briefing (when appropriate)
- Appropriate in-flight emergency procedures
- Emergency landing procedures
- Emergency evacuation procedures

The Program Aviation Manager for the respective program will be responsible to ensure that the above listed training has been completed and documented for all medical personnel. Course completion documentation must be forwarded to the Chief Pilot via the 135medcrew@airmethods.com email address using the proper naming convention.

2.11 Conditional Flight Release

Effective immediately, all night operations that cannot be conducted aided with Night Vision Goggles (NVGs) are subject to Conditional Flight Release. In order to obtain a Conditional Flight Release, Night High Lighting Conditions, defined as follows, must exist:

Night High Lighting Conditions means conditions in which the cloud cover is less than broken (less than 5/8 cover), the time is between local moonrise and moonset, and at least 50% of the lunar disk is illuminated, or the entire operation is conducted over a lighted surface area. Moonrise, moonset and lunar disk illumination data shall be consistent with the data available from the United States Naval Observatory. A lighted surface area is an area in which prominent objects are lighted, and surface lighting is adequate to identify terrain features and establish a usable horizontal reference. The lighting required to support this level of surface
definition may be manmade, natural, direct or indirect, or any combination thereof, provided these stated requirements and the requirements of 14 CFR 135.207 are met.

Changes to 411 and Flight Release will identify which aircraft/pilots are unable to conduct night operations aided by NVGs. Pilots who request Conditional Flight Release must obtain authorization from the Operations Control Center (OCC). OCC Specialists will verify Night High Lighting Conditions exist and are reasonably expected to continue to exist for the requested Conditional Flight Release. A Conditional Flight Release is required for all unaided night flights. For this purpose, a flight is considered to be all legs of one transport.

OCC Specialists will not issue a Conditional Flight Release if Night High Lighting Conditions do not exist for the proposed route(s) of the flight. Additionally, OCC Specialists will cancel Conditional Flight Releases if Night High Lighting Conditions cease to exist.

2.12 Cyclic / Control Yoke Warning Cover

All Air Methods’ aircraft will have a RED and YELLOW cyclic/control yoke warning cover (red/yellow sock, red/yellow golf club cover, etc.) located in the cockpit in a location accessible to the pilot or mechanic.

Prior to rendering an aircraft out of service, the Mechanic or Pilot will install a RED cyclic/control yoke warning cover over the pilot’s cyclic stick or control yoke as applicable. The RED cover can be installed by a Pilot or Mechanic but will only be removed by a Mechanic after the aircraft has been returned to service.

Pilots who perform a function that returns the aircraft to an airworthy condition are authorized to remove the red cover after returning the aircraft to an airworthy condition. An example would be a pilot who is trained and authorized to unfold the rotor blades may remove the red cover. This allowance is only for functions that pilots have been trained and authorized to perform.

Pilots or mechanics will utilize a YELLOW cyclic/control yoke warning cover anytime the aircraft is restrained from flight (i.e. tie downs in place, ground/shore line power connected, required documentation removed from aircraft, etc.).

All Air Methods’ flight crews (medical personnel) will be informed as to the purpose of these cyclic/control yoke warning covers.

2.13 Daily Flight Log (DFL) / Load Manifest – Helicopters

A Daily Flight Log (DFL) shall be carried in each helicopter for all flights. A sample Daily Flight Log is located in the Appendix of this manual – the actual form is located on FlightDeck > Resources > Corp Forms. Header data and signature will be completed prior to the first departure. The following guidance shall be used in preparing the DFL:

- Record the Base: (either City/State or 411 base identifier).
- Record the date, aircraft N-number and aircraft model.
- DFL Number is a unique, company assigned number.
 - The first part will be a six digit combination of numbers and possibly letters. The last two digits signify the year. For example: 53234-034-12, EC3245-127-12, AS4321-003-12.
 - If additional pages are needed to capture all flights for the 24-hour period, they will use the same DFL sequence number and be labeled (above the sequence number) 2 of 3, 3 of 3, etc.
- Time in Service Brought Forward: Brought forward from the previous DFL, recorded as hours and minutes.
- Time in Service Today: the total time for the just finished 24-hour period, shown in hours and minutes. Hobbs meter time will be used only with the approval of the Director of Maintenance and the Chief Pilot, or their respective representatives.
- Total Time in Service: The sum of the time brought forward and today's time in service; recorded in hours and minutes, unless authorized as above.
- PIC and SIC names: Print last name, first initial, then pilot certificate number and type (e.g. Doe, J 1234567 ATP).
- Circle the leg number to indicate engine start(s) other than maintenance starts. For scene flights, the leg without a start will not have its number circled.
- Additional maintenance starts will be noted in the upper margin in a way that clearly indicates the number of maintenance starts for each engine.
- Record the number of passengers for each flight leg.
- Print the last name of each PIC/SIC for each flight leg.
- Flight origin and destination; shown as coordinates, navaid, fix, radial/distance, airport identifier (KAPA, E91, 8TE5), or plain language name (scene, Rockford).
- Multiple landings (as might occur during training legs) shall be totaled in the remarks box.
- Helicopter takeoff and landing times shall be entered in local time, 24-hour format. Takeoff time shall be recorded just before liftoff. This is the method to track time in service for maintenance.
 - In the event that a helicopter lands at a destination in another time zone, the time entered shall be the local time of the base of departure. Any subsequent leg times shall be noted in the local time of the departure location. This method simplifies the record keeping of flight/duty times.
 - When an aircraft starts a flight before midnight then completes the last leg of the flight after midnight, all legs for that flight number shall be on the DFL for the day of first departure.
- Wheeled helicopters will record block out and block in times, in addition to takeoff and landing times. See the Trip Sheet Procedures in Section 4 of this manual for further guidance.
- The pilot's risk assessment value and elevation of the highest obstacle/terrain (identified during planning required by 14 CFR135.615 shall be recorded for each leg in the remarks block.
- The flight time section shall be completed with time entered in hours and minutes.

Takeoff and max weights will be entered for all flights, except maintenance, training, ferry and reposition flights with only Air Methods employees aboard. These exceptions are conducted under Part 91.

For Part 91 flights “Part 91” will be written in the weight and balance portion of the DFL. Also, the purpose of the flight (one of the above categories of exception) will be entered in the remarks section.
The entry of CG data (forward limit, actual CG, aft limit) is required only for multiengine helicopters. This data must also be recorded in the 411 pilot logs. As with the weight data, recording CG data is required only for Part 135 flights.

NOTE: The PIC must still determine that takeoff weight and balance is within limitations for all flights (both Part 91 and Part 135); only the requirement to record the data is waived for Part 91 flights.

NOTE: To facilitate situational awareness the pilot may record time, weight and balance data either immediately on the DFL itself, or on another location (e.g. Trip Sheet from Section 4), then transfer it to the DFL at a safer time but no later than the completion of the last leg of the current flight.

- The DFL must be signed. If a second page is needed for a 24-hour period, or a new DFL is opened after midnight, the PIC will sign at the bottom of the new sheet/page. This constitutes a verification of airworthiness. The PIC is required to sign the current page only once. For example: the night pilot closes a DFL after midnight, then opens a new one and signs it. If that pilot goes home in the morning then returns to duty for the next night shift (on the same calendar day), the pilot does not need to sign the same page again.
- The pilot will close the DFL and Maintenance Log after midnight for the previous 24-hour period and create a new DFL and Maintenance Log page.
- The Lead Pilot and Program Aviation Manager will audit the DFLs using the Pilot 411 audit process before they are sent to Air Methods (processed). This DFL audit process will be conducted every 8 days.
- The paper copy of the DFL will be carried aboard the helicopter during flights and a completed copy will be kept on file at the base, in a consistent and commonly known location to expedite access by pilots and mechanics, for not less than 30 days. On the 3rd and 18th of each month, these DFLs will be scanned or converted to a PDF file and forwarded electronically to the Chief Pilot, using the appropriate 135forms email address and proper naming convention. These electronic copies will be kept at the main office for 30 days after the date they were created; they satisfy the requirement to keep a duplicate copy of the load manifest.

The DFL satisfies all the requirements of a Load Manifest if the weight and balance section is completed. Each day, the duty pilot will double check the calculation of times on each DFL to prevent continuation or carryover of a mathematical error in computing airframe and/or engine times in service.

2.14 Deplaning Aircraft After Landing / Before Takeoff

Medical personnel/crewmembers or passengers shall not depart the aircraft until the pilot verbally notifies them that they have landed and are cleared to deplane. The medical personnel or passengers shall inform the pilot prior to departing the aircraft.

Pilots shall not takeoff until they have received verbal confirmation from onboard medical personnel/medical crewmembers or other passengers that they are seated, safety belts/shoulder harnesses (as applicable) are fastened, and doors are closed and secured.

2.15 Destination Hazards

[135.69]

An Air Methods’ pilot will not continue a flight if they become aware of a condition that involves an airport/destination and/or runway that may present a hazard to safe operations. Operations shall be restricted or suspended as necessary until those conditions are corrected.
Pilots may continue toward an airport/destination and/or utilize a runway when a hazard exists, provided the hazard will no longer exist at the estimated time of arrival.

2.16 Deteriorating Weather Conditions Enroute

If while conducting VFR operations, deteriorating weather conditions are encountered, one of the following procedures is to be followed:

- Divert to an alternate airport/heliport or other suitable area where the patient(s) can be transferred to other means of transportation, if applicable.
- Return to the departure point, if practical.
- Land and notify dispatch or hospital personnel of the situation and make arrangements for care of the patient(s), if applicable.
- If weather conditions and regulations permit, continue the flight under IFR (not applicable to VFR only operations).
- Execute the IIMC procedure in Section 2 of this manual if the preceding options are not available.

2.17 Document / Equipment Required in Aircraft

[91.9, 91.203, 91.519, 135.21, 135.83]

All Air Methods aircraft shall carry the following standardized documents on board. It is the PIC’s responsibility to verify current versions of these documents are on board the aircraft.

- Air Methods’ General Operations Manual (Including Operations Specifications)
- Aircraft Maintenance Log
- Airworthiness Certificate (displayed at the cabin door or cockpit entrance so that it is legible to passengers and crew)
- Aircraft Registration
- Aircraft Status Report retrievable from 411
- Airplane or Rotorcraft Flight Manual
- Appropriate and current aeronautical charts for VFR or IFR operations
- One passenger briefing card per seat at a location convenient for the use of each passenger. The passenger briefing cards shall be appropriate for the aircraft configuration.
- Cockpit Checklist (meeting the requirements of 135.83)
- Daily Flight Log
- Deferred Discrepancy Report
- FCC radio station license (when required)
- IIMC Procedure, as applicable
- Minimum Equipment List (If applicable)
- Pilots Maintenance and Servicing Procedures
• Weight and balance information
• Hazardous Materials Manual

In addition to applicable FARs, aircraft shall be equipped with the following:

• Flashlight with two D cell batteries or equivalent.
• An operable radar altimeter is required for all night flight operations. The intent of this requirement is for VFR helicopter operations that are typically conducted at low altitudes into and out of unimproved areas. This requirement does not apply to airplanes.
• A slew able searchlight, or equivalent, is required for helicopter night scene flights.

For overwater flights:

• Equipped with floats.
• Approved life preserver for each occupant, readily available.
• At least one pyrotechnic signaling device.

2.18 Dropping Objects

Air Methods’ pilots will not allow objects to be dropped from their aircraft unless it is in conjunction with a medical flight and the PIC has determined that a hazard will not exist for persons on the ground. Requests for public relations event support in which objects might be dropped will be approved by the Chief Pilot or their designee prior to the event.

2.19 Emergency Notification

[135.19]

In the event the certificate holder or PIC who, under emergency authority, deviates from any Federal Aviation Regulation shall, upon the safe completion of the flight, write a complete report of the aircraft operation involved. He/she will include a description of the deviation taken and the reasons for it. He/she will immediately send it to the Director of Operations and/or Chief Pilot who will forward it to the FAA no later than ten (10) business days after the day of the deviation.

2.20 Emergency Operations

[135.19, 135.23, 135.123]

During any aircraft emergency, the pilot’s first responsibility is to fly the aircraft. During an emergency, the pilot will comply with the emergency procedures set forth in the aircraft flight manual, Air Methods’ approved checklist, and any other appropriate action as required. All aircraft operations shall be conducted in accordance with the provisions of this Manual, company policy, and the FARs. As medical flights are planned flights, patient condition will not be a valid consideration for use of FAR 135.19 emergency deviation authority. This does not preclude the appropriate use of FAR 135.19 for other valid emergencies to the extent required to meet the emergency.

When on board and necessary, the trained medical personnel will assist the pilot with evacuating patient/passenger, fighting on-board fires with hand-held fire extinguishers and with briefing conscious and coherent patients/passengers and securing their loose items.
All Air Methods’ pilots and medical personnel/crewmembers will have annual training on emergency evacuation procedures. It will be the responsibility of the pilot and medical personnel/crewmembers to assist passengers and/or patients in emergency evacuation. These duties will include but not be limited to:

- Opening of main exit doors, if possible,
- Assisting Passengers/Patients to disembark,
- Leading Passengers/Patients to a safe area,
- Notifying proper authorities and requesting aid, and
- Giving necessary medical attention, if necessary.

If an emergency occurs on the ground, or once an aircraft is returned to the surface, the pilot(s) will evacuate the aircraft via any normal or emergency exit. After successfully evacuating themselves, each pilot will assist in passenger evacuation. It will be the duty of both the pilot and medical personnel/crewmembers to assist in the evacuation of any and/or all handicapped persons or those needing assistance that are aboard the aircraft.

2.21 Emergency Procedures – Performing Practice

Emergency procedures, including autorotation, shall not be performed except under the supervision of a Company Instructor or Check Airman during training or flight checks. This does not preclude normal aircraft testing included in a post-maintenance flight.

2.22 Enroute Qualifications

[135.23, 135.299]

Any pilot, who has not flown over a route and into an airport within the preceding 90 days, will before beginning a flight over that route and/or into that airport:

- Study the route on low altitude VFR or IFR charts as appropriate, noting MEA’s, MOCA’s, routing, ATC frequency allocations, changes to NAVAIDS, and any other pertinent information.
- Study the current Airport Facility Directory, noting runway lengths and orientation, available instrument approaches, weather observation capability, tower hours of operation, and any other pertinent information.

2.23 Flight Following

[135.23, 135.79]

Air Methods has established the following procedures for VFR flight following/locating requirements for all flights. This includes training, maintenance and ferry flights.

- All flights require an electronic Air Methods flight plan.
- The HBS communications specialist will enter their flight plans into the Air Methods internet based Flight Log system prior to aircraft departure. All known legs will be entered at this time.
- AirCom/Air communications specialists will enter their flight plans into their Air Methods approved flight tracking system prior to departure. All known legs will be entered at this time.
• All flight plan information including departure and arrival waypoints, lift off and landing times, position reports, and flight plan changes will be entered in a timely fashion.

• When an aircraft lifts off for an assigned flight, the pilot or their designee will provide the communications specialist, the number of people on board, fuel load remaining in flight time (hours and minutes), destination, ETA, and risk assessment value.

• Every 15 minutes into the flight, the pilot will give his/her present position in latitude and longitude or by ground reference and time remaining to the destination. Each position report shall be entered into the Air Methods internet based Flight Log or AirCom/ARCH Air Methods approved flight tracking system as appropriate. If the pilot fails to call within 15 minutes the Communications Specialist will call the aircraft and request current position report.

NOTE: If the aircraft is equipped with an operable GPS flight tracking system, such as Outerlink or Sky Connect and the flight is continuously tracked by the Communications Center, position reports are not required.

• When landing is ensured at the intended destination, the pilot will notify the communications center by radio (or telephone after landing) of the landing time.

• Upon mission completion, the flight will be “Completed” in the appropriate flight tracking system.

NOTE: In the event the Air Methods internet based Flight Log is inaccessible, the Communications Specialist will call the Air Methods Operational Control Center to relay the pertinent flight information. The number for the Operational Control Center is (866) 676-3442.

If the pilot has to land for any unforeseen reason before reaching the intended destination, i.e.; malfunction or weather related, he/she will call the communication center either by radio or telephone. The pilot shall give their approximate location, reason for landing, estimated lift off time (if possible), and a revised ETA to the hospital or scene.

If the flight takes the aircraft out of the communication center radio range, then the pilot will give position reports to another facility (hospital, airport unicom, air medical program communication center, etc.) that is within radio range and request the position report be relayed to the appropriate communication center by telephone.

If, for any reason, the pilot knows he/she will be out of radio contact for an extended period of time, he/she will contact the communication center with reason and expected time of delay.

After 30 (thirty) minutes on a scene, or 45 (forty five) minutes for an inter-hospital flight, if the crew has not contacted the communication center with a liftoff time and an ETA back to the receiving facility, the Communications Specialist shall attempt to ascertain the status of the flight. The pilot will follow the above as appropriate for the return trip.

Air Methods’ aircraft on an IFR flight plan will file an IFR flight plan with the controlling agency, Flight Service Station, or appropriate facility as required. Prior to takeoff and after landing the Pilot-in-Command will contact the appropriate communication center to advise of any updated information concerning the flight. This information will be entered by the Communications Specialist in the Air Methods internet based flight log or for AirCom/ARCH Rescue Net as appropriate.

NOTE: Air Methods owned communications centers, AirCom located in Omaha, NE and ARCH located in Omaha, NE use Air Methods approved flight following software.
2.24 Flight Time Limitations and Rest Requirements: Unscheduled One and Two Pilot Crews

[135.1 135.63, 135.263, 135.267]

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty Period</td>
<td>The period of elapsed time between reporting for an assignment involving flight time and release from that assignment by the certificate holder.</td>
</tr>
<tr>
<td>Scheduled Duty Period</td>
<td>12 scheduled consecutive hours that may be extended to 14 hours.</td>
</tr>
<tr>
<td>Duty Assignment</td>
<td>A revenue flight which may contain multiple legs planned to be completed during the scheduled duty period.</td>
</tr>
</tbody>
</table>
| Helicopter Air Ambulance Operation (HAAO) | A flight or sequence of flights with a patient, donor organ or human tissue, or medical personnel on board for the purpose of medical transportation, conducted by a Part 135 certificate holder authorized by the administrator to conduct HAA operations. A HAA operation also includes, but is not limited to:
 - Flights conducted to position the helicopter at the site at which a patient or donor organ will be picked up
 - Flights conducted to reposition the helicopter after completing the patient or donor organ transport
 - Flights initiated for the transport of a patient or donor organ that are terminated due to weather or other reasons (refer to 135.601) |
| Planned Completion Time (completed) | The realistically planned completion time of a duty assignment considering forecast weather, aircraft reconfiguration, average on-scene or bedside time and any anticipated delays. |
| Rest Period | 10 scheduled hours of rest that are consecutive, known in advance and free from all restraint. |
| Tail-End-Repositioning-Flight | A non-revenue repositioning flight conducted at the completion of a duty assignment for the purpose of repositioning the aircraft. |

Pilots and certificate managers are responsible for ensuring compliance with the flight time limitations and rest requirements.

Pilots will report for duty with the appropriate rest and be capable of performing their assigned flight crewmember duties. At any time a flight crewmember becomes medically or physically unfit for duty they shall vocally notify the appropriate aviation manager, self-ground and comply with the requirements of CFR 61.53.
As a part 135 certificate holder Air Methods conducts unscheduled passenger operations pursuant to 14 CFR 135.267(d). Air Methods does not conduct operations pursuant to 14 CFR 135.271. A pilot may only be assigned duty if he/she has had 10 hours of consecutive rest prior to the assignment. Each flight crewmember must receive 10 consecutive hours of rest in the 24 hour period before the expected completion time of the assignment.

Duty periods and flight time shall be captured in the Air Methods Pilot 411 system. The duty time summary (reference Section 12) shall be printed, verified and signed by the pilot then transmitted to the pilot records department by the 10th of the following month.

A pilot who has received approval from the Chief Pilot to perform non-Air Methods commercial flying will ensure that those activities do not interfere with the ability to perform their assigned AMC duties. Air Methods pilots are not authorized to fly for competitors.

2.24.1 Effect of Delays

If the original planned completion time of the duty assignment is upset for reasons beyond the control of the certificate holder, the flight may nevertheless be conducted, even though the duty period may extend beyond 14 hours in a 24 hour duty period. The key to the applicability of 135.267(d) is in the final phrase, “planned completion time of the assignment”. This potential exemption is not a recommendation to exceed a scheduled duty period.

Delays due to air traffic control, mechanical problems, adverse weather, and late arriving passengers could constitute circumstances that are beyond the control of the certificate holder that would permit the flight crew to finish its duty day after the originally planned completion time.

The pilot in command will notify his Aviation Manager or their designee as soon as practicable when it becomes apparent the planned duty period will be exceeded. The Aviation Manager will discuss the situation with the pilot, consider alternative options, evaluate the effects of fatigue and together they will determine the appropriate course of action which could include requesting another aircraft to assist. In any event, the Operational Control Center will be notified by the pilot or aviation manager of the extended duty period and the course of action.

A duty assignment is considered complete when all medical crewmembers have deplaned. The pilot may then conduct a tail-end-repositioning-flight. A tail-end-repositioning-flight that will exceed 14.5 hours of duty time requires the approval of the Regional Aviation Director or their designee, Chief Pilot, Aviation Compliance Manager or Director of Operations. The required rest period begins after the pilot reaches his final destination and all post flight duties have been completed.

If a duty period exceeds 14 hours it is automatically captured in the Pilot 411 system. The remarks section that appears on the “Duty-Out” screen in Pilot 411 shall contain an explanation in sufficient detail to explain the time worked in excess of 14 hours, a description of the unplanned occurrence and a statement that the pilot is aware of the required rest before returning to duty. There is no requirement to submit an AIDMOR for the sole purpose of reporting an extended duty day. The pilot shall not be allowed to return to duty until he/she has had a minimum of 10 consecutive hours of uninterrupted rest.

No certificate holder may assign any flight crewmember, and no flight crewmember may accept an assignment, for flight time as a member of a one- or two-pilot crew if that crewmember’s total flight time in all commercial flying will exceed—

(1) 500 hours in any calendar quarter.

(2) 800 hours in any two consecutive calendar quarters.
(3) 1,400 hours in any calendar year.

Pilots will not intentionally exceed the one or two pilot crew flight time limits of 8 or 10 hours respectively. If the 8 or 10 hour flight time limit is exceeded during a regularly scheduled duty period, compensatory rest, per 135.267(e), must be taken. Each Air Methods’ pilot shall have at least 13 rest periods, of 24 consecutive hours, during each calendar quarter.

2.25 Fueling

[135.23]

NOTE: For additional guidance, reference the Air Methods Aviation Fuel Management Program Manual and the Air Methods Training manual. Medical Personnel that have completed the Air Methods Refueling Training can perform the “Trained Medical Person/Personnel” functions in this section; they may also refuel the aircraft if the engines are shut down.

It shall be the responsibility of the Pilot-in-Command to check the amount of fuel and correlate this amount with the total fuel as reported by the servicing agent and as indicated by the fuel gauges and by a visual tank check when tank openings can be readily reached. Additionally, he/she must confirm, by color and tank marking, that the fuel is of the correct grade and obtain a fuel sample as outlined in the Aircraft Flight Manual.

When receiving fuel services away from home, the Pilot-in-Command will supervise the refueling process and will verify that the proper grade of fuel is being dispensed for the aircraft. Pilots should provide extra vigilance at facilities where both turbine (jet) fuel and gasoline are dispensed to ensure the appropriate fuel is utilized.

The flow of jet type fuel creates more static electricity than other types of fuel; therefore extreme caution must be used during this potentially dangerous operation.

During the refueling of an aircraft, the concentration of fuel vapor in the area surrounding the aircraft varies with the wind velocity and the rate of fueling. These invisible vapors are too often ignored, are heavier than air, and tend to settle and spread. It should be remembered that when fuel is pumped into the aircraft tanks, it displaces an equal volume of vapor, which is discharged into the atmosphere. When sufficient vapor accumulates so that an odor is present, conditions are good for a fire and explosion. Most importantly, concentrations are dangerously increased by fuel spills. Spills are the greatest hazard. All that is needed is a source of ignition, such as a static discharge, lighting of a cigarette, or the pilot light of a gas heater nearby. Therefore, the Pilot-in-Command will protect the aircraft and persons by observing procedures to minimize fuel contamination, protection against fire, prevent spillage and other potential hazards.

2.25.1 Safety Precautions (All Refueling)

- No smoking and no flames or fires shall be permitted within 50 feet of an aircraft while refueling.
- In the event of spillage, all pumps and electrical equipment will be shut down. Refueling may be restarted after spillage has been removed.
- Line personnel will remove any loose objects from their person that could possibly enter a fuel or oil service port.
- Fire extinguisher will be available.
- The aircraft will be bonded to its fueling source for all refueling operations with engines shut down, except where authorized in this chapter, see “Rapid Refueling with Rotors Turning.”
• Strobe Lights should be turned off and radio transmissions restricted until fueling is completed.
• The refueling unit/truck will remain outside the rotor arc.
• Refueling operations shall not be conducted during periods of active thunderstorms and detected lightning, within 5 miles of the fueling operations.
• Aircraft maintenance is not allowed during refueling, servicing of oxygen, LOX batteries, or medical equipment.
• Aircraft ground-power units should be located as far away from the fueling point as practicable and neither connected or disconnected during fueling.
• Electric tools, such as drills or buffers, shall not be used in or near the aircraft during refueling.
• Aircraft radios, portable radios, or cell phones shall not be operated in the vicinity of any aircraft refueling operation.
• Use caution in removing the fuel tank cap and place the tank cap where it will not get contaminated.
• Make sure the nozzle is properly bonded to the aircraft and placed in the filler neck.
• Don’t block the nozzle trigger in the open position unless the nozzle is of the type that shuts off automatically and then only use the system provided on the nozzle handle.
• Never leave the nozzle unattended.
• Make frequent visual checks of the amount of fuel in the tank and take extreme care to prevent spills and over-filling of the tanks.
• Upon completion of the refueling, close the filler cap properly, disconnect all bonding and bonding cables, remove the hose and cables from the vicinity of the aircraft.
• If an aircraft fuel apparatus or spilled fuel catches fire, engage all fuel shut-offs. Notify the Fire Department immediately. If possible and without endangering self or others, fight the fire with all means available.

2.25.2 Additional Procedures for Fueling with Patient Onboard (Cold Refueling)
• The PIC will conduct an exit briefing before exiting the aircraft.
• A Trained Medical Person with a fire extinguisher, will remain onboard the aircraft with the patient. The patient will be prepared for rapid evacuation.
• The second Trained Medical Person will position himself/herself, with a fire extinguisher (if available) in a position that will allow monitoring of the refueling operation and the onboard attendant simultaneously, so as to be able to coordinate emergency evacuation / firefighting assistance as necessary.

2.25.3 Rapid Refueling with Rotors Turning without Medical Personnel or Passengers
• The aircraft will be bonded to its fueling source.
• Aircraft power will be reduced to ground idle or a reduced power setting as specified in the Rotorcraft Flight Manual, controls positively locked or friction applied to prevent movement. Force trim shall be on (if installed), autopilot turned off (if installed), and the rotor disc level.
The pilot may go beyond the rotor arc of the aircraft to retrieve the fuel nozzle, bonding cables or secure the previously mentioned items.

Fire extinguisher will be accessible near fueling port.

If an aircraft fuel apparatus or spilled fuel catches fire, engage all fuel shut-offs, shut down the aircraft if possible. Notify the Fire Department immediately. If possible and without endangering self or others, fight the fire with all means available.

2.25.4 Rapid Refueling with Rotors Turning with Medical Personnel

The aircraft will be bonded to its fueling source.

Aircraft power will be reduced to ground idle or a reduced power setting as specified in the Aircraft Flight Manual, controls positively locked or friction applied to prevent movement. Force trim shall be on (if installed), autopilot turned off (if installed), and the rotor disc level.

The pilot may go 30 feet beyond the rotor arc of the aircraft to retrieve the fuel nozzle, bonding cables or secure the previously mentioned items.

All Medical Personnel will exit the aircraft. One Trained Medical Person will position himself / herself, with a fire extinguisher in a position that will allow monitoring of the refueling operation, to lend firefighting assistance as necessary. The other Trained Medical Person will act as tail rotor guard.

A Fire extinguisher will be accessible near fueling port.

Fuel Truck will be placed a minimum of 30 feet beyond the rotor arc.

If an aircraft fuel apparatus or spilled fuel catches fire, engage all fuel shut-offs, shut down the aircraft if possible. Notify the Fire Department immediately. If possible and without endangering self or others, fight the fire with all means available.

2.25.5 Rapid Refueling with Rotors Turning with Medical Personnel and Patient

The aircraft will be bonded to its fueling source.

The PIC will conduct an exit briefing before allowing the Trained Medical Personnel to exit the helicopter.

The Trained Medical Personnel will exit the helicopter and post in a position that will allow them to guard the tail rotor and monitor the pilot.

The PIC will conduct an exit briefing before exiting the aircraft.

Engine/rotor RPM shall be set to the lowest appropriate setting, the force trim shall be on (if installed), the autopilot turned off (if installed) and the rotor disc level.

A Trained Medical Person with a fire extinguisher, will remain onboard the aircraft with the patient. The patient will be prepared for rapid evacuation.

The second Trained Medical Person will position himself/herself, with a fire extinguisher (if available) in a position that will allow monitoring of the refueling operation and the onboard attendant simultaneously, so as to be able to coordinate emergency evacuation / fire fighting assistance as necessary.

Fuel Truck will be placed a minimum of 30 feet beyond the rotor arc.
If an aircraft fuel apparatus or spilled fuel catches fire, engage all fuel shut-offs, shut down and evacuate the aircraft. Notify the Fire Department immediately. If possible and without endangering self or others, fight the fire with all means available.

2.26 Fuel Sumping – All Aircraft

At a minimum, each aircraft at a base will have all fuel sumps drained once per shift, at the start of each shift. The draining method must be as specified in the RFM/AFM/POH.

Sump draining may be done by either the pilot or mechanic, but the pilot retains responsibility for completion of the procedure.

If the RFM/AFM/POH specifies more frequent draining of sumps, this higher frequency will be observed.

In any case, the two most recent fuel samples will be kept in glass containers and in an appropriate location at the base.

If fuel contamination or improper fuel is suspected, contact the OCC.

2.27 Hazards Map – Local Area

The Base Lead Pilot shall be responsible for the development and maintenance of the base “Hazards Map.”

NOTE: *Fixed wing programs are not required to develop a Local Area Hazards Map.*

At the discretion of the Base Lead Pilot, a VFR Sectional Chart will be used to fulfill this requirement. The edges of the map will be trimmed as to provide coverage of a minimum of 75nm from the base. All pilots are required to immediately annotate new hazards on the map and bring them to the attention of their fellow pilots.

Annotation is only necessary if hazards present a threat to normal operations. The following is a non all-inclusive list of potential hazards that would need to be annotated on the map:

- Towers not already depicted on the map.
- Power lines (high voltage), and other wires and cables that are not already depicted on the map. Additional marking over existing map detail may be appropriate where long wire spans cross over canyons, rivers, highways, or near known landing areas.
- High buildings or structures under construction that may be a new hazard during approach or departure from an existing helipad; or create a hazard to normal helicopter traffic routes and operating areas.
- TFR’s
- Low-level Military Routes not depicted on the map.
- Undepicted airports.
- Undepicted sky diving, glider, hang glider, ultra-light, and VFR practice areas.
- Remote control airfields.
- Undepicted preferred VFR routes.

A Hazard Log will be posted adjacent to the hazard map for the purpose of supplying information defining the hazards. The Hazard Log will include a list of hazards numbered 1 thru XX on the Post-It Flags to
identify date posted, dates applicable, and description of each hazard. Additionally, the hazard log will indicate changes, updates, and acknowledgement of pilots performing duties at that particular base. It will include a definition of symbols used to identify hazards.

When a new hazard is identified, it will be posted to the hazard map with a Red Post-It Flag and a New Hazard Log will be posted. A Red Post-It Flag will remain in place until all assigned pilots have acknowledged its posting by initialing next to their name on the New Hazard Log. When all assigned Pilots have acknowledged the new hazard the Red Arrow device will be replaced with the appropriate color coded Post-It Flag and numbered in sequence. The Hazard Log will be updated with the pertinent information of the hazard and the New Hazard Log will be discarded.

The map should be reviewed and updated monthly to ensure posted hazards are still current.

NOTE: The intent of the Hazards Map is to flag items that are not already shown on the map and at the discretion of the Base Lead Pilot, to indicate unique features including those already on the map. The existence, maintenance, and periodic review of the map will be confirmed during staff visits and base audits.

NOTE: Further guidance for the hazard map can be found on the Air Methods Intranet under the Pilots Reference Library.

2.28 Instrument Flight Rules – General

Approved sources of weather for IFR operations are listed in Paragraph A010 of the Operations Specifications. When an approved weather source is unavailable, 135.611 allows a helicopter pilot to use an approved weather reporting source if located within 15 nautical miles from the destination landing area or use the area forecast if no such weather reporting source is available. Air Methods pilots will use an approved weather reporting source located at the destination landing or departing area, if available, or will use those approved weather reporting sources within 15 miles only if those sources are located in an area that is meteorologically representative of the landing or departing area as determined by the pilot. Furthermore, when using an area forecast, all available pertinent weather information such as PIREPs, METARs, and TAFs located along the route of flight and in the vicinity of the destination or departure area and the HEMS tool will be reviewed to support the area forecast. If any available pertinent weather information does not support a go decision, the pilot will not accept the flight based on the area forecast. The HEMS tool may only be used for a no-go decision.

NOTE: 14 CFR Part 135.611 requires that the pilot select an alternate airport that meets the requirements of 135.221 and 135.223. This alternate must also have an approved weather reporting source in accordance with 135.213

2.29 Instrument Flight Rules – Operations at Locations without Weather Reporting

[135.611]

For a flight to be conducted under FAR 135.611, the additional weather briefing and flight monitoring actions described below must be taken.

Additional weather briefing requirements for flights under FAR 135.611 include all of the following:

- The pilot will use information obtained from the National Weather Service to determine that there is no reasonable possibility of thunderstorms or other potentially hazardous weather conditions expected to exist at the destination, alternate or along the route to be flown for the period of time planned for the flight.
The following aviation weather products must be reviewed in making the weather determination: AIRMET, SIGMET, CONVECTIVE SIGMET, METAR, REGIONAL NEXRAD, NOTAM, PIREP and TAF.

No IFR operation under FAR 135.611 will be released if current weather reports or forecasts indicate the potential for thunderstorms or other potentially hazardous weather to exist at the destination, alternate or along the route to be flown for the period of time planned for the flight. If such potential exists, the pilot must refuse the flight.

Flight Monitoring by the Operations Control Center

Once the flight becomes active, the Air Methods Operations Control Center uses specialized software, Flight Management System (FMS) that automatically monitors the flight plan, current position and destination of all active flights. The FMS system automatically alerts the Operations Control Specialist, by text and with visual alerts on the FMS display, when there is hazardous weather within 30 NM of an aircraft or a point on the route of flight.

The Air Methods Operations Control Center monitors all flights for un-forecast weather and provides that information to the pilot by:

- Relay through the Communications Center to the pilot
- Contacting the pilot directly via satellite phone, or
- Contacting the pilot directly over our internet based voice communications system.

The Operations Control Center provides general advice such as, “there are thunderstorms to your west - recommend you divert to the east.”

If preflight risk analysis indicates that a helicopter air ambulance IFR operation is unable to comply with these additional GOM FAR 135.611 planning requirements, the flight will be assessed a risk level of No Fly.

2.30 IFR Alternate Requirements and Fuel Requirements

[135.209]

IFR alternate requirements and fuel requirements shall adhere to the FARs and appropriate Operations Specifications Paragraphs.

If an alternate is required, the following alternate selection criteria apply:

- **Airplanes:** Reference Operations Specifications Paragraph C055
- **Helicopters:** Reference Operations Specifications Paragraph H105

2.31 IFR and Over the Top Limitations

IFR and over-the-top operations shall be conducted per FAR 135.181, 135.211 and Operations Specifications Paragraph A046 as appropriate.

2.32 IFR Departures
No pilot may depart on an IFR or a VFR-over-the-top flight unless the latest weather reports or forecasts, or any combination thereof, indicate that the weather conditions at the estimated time of arrival at the airport/heliport of intended landing will be equal to or greater than the ceiling (expressed as HAT or HAA) and landing minimum (visibility), specified in the instrument approach procedure to be flown.

Helicopter instrument departures from hospital heliports/helipads are prohibited unless specifically authorized by the Operations Specifications.

Lower than standard takeoff minimums may be published in the Operations Specifications Paragraphs C057, C079, and H116.

In accordance with Operations Specifications Paragraph C057, pilots of multiengine airplanes may takeoff from an airport where straight-in approaches are authorized in weather conditions less than standard IFR takeoff minimums if an approved weather source indicates the weather is at or above the lowest straight-in landing minimums. Such operations will be undertaken only if the wind direction and velocity at the time of takeoff allow a landing on the runway served by the straight-in instrument approach and the facilities serving that approach are operational.

In accordance with Operations Specifications Paragraph H116 helicopter crews consisting of at least two pilots may takeoff with less than standard visibility, provided they meet the requirements and visibility minimums listed in that paragraph.

Controlled airspace, to the surface, is required for the departure airport/heliport, unless otherwise authorized in the Operations Specifications. IFR departure requirements for Class G airspace can be found in Operations Specifications Parts C and H.

2.33 IFR Destination Requirements

[135.225]

Instrument approaches require controlled airspace to the surface of the destination airport/heliport, unless otherwise authorized in the Operations Specifications. IFR arrival requirements for Class G airspace can be found in Operations Specifications Parts C and H.

Air Methods pilots shall use an instrument approach procedure prescribed by FAR Part 97 or authorized by Operations Specifications Paragraph H122.

Pilots shall comply with the highest DH or MDA for the procedure, PIC qualifications, or aircraft equipment as appropriate. Pilots shall not operate below the MDA or continue an approach below DH unless in a position to make a normal descent to the intended runway, the flight visibility is not less than prescribed and the visual cues of FAR Part 91.175 are visible.

Pilots will not commence an instrument approach, or begin the final approach segment of an approach, to an airport unless that airport has an approved source of weather, unless authorized by 14 CFR Part 135.611.

Additionally, the latest weather report must indicate the weather is at or above the authorized IFR landing minimums per Operations Specifications Paragraphs C053, C074, C075, H103, and H117.

Pilots may continue an approach if after commencing the final approach segment, a later weather report indicates the weather is now below minimums provided the aircraft is:

- On an ILS final approach and past the final approach fix.
On an ASR or PAR approach and they have been turned over to the final approach controller.

On VOR, NDB, or similar approach and the aircraft has passed the final approach fix, or if a final approach fix is not specified, procedure turn inbound and within the distance prescribed for that approach.

In the above situation, the pilot may continue the approach to the missed approach point. Upon arriving at the MDA the pilot may land if they find the actual weather to be at or above the prescribed landing minimums.

When being radar vectored to an approach, and when cleared for an approach, pilots will comply with Part 91.177 minimum altitude and maintain the last assigned altitude until established on a segment of a published route or the approach.

Pilots will not execute a procedure turn unless authorized to do so by ATC when being radar vectored to final approach, from a timed holding pattern, or when an instrument approach procedure specifies “NoPT.”

Once cleared for an instrument approach procedure, pilots will comply with all procedural tracks and/or ATC instructions unless adverse weather, such as moderate/severe icing or thunderstorms, is encountered.

Unless, at the time an instrument approach is initiated, the reported weather is better than 1000 feet and 5 miles visibility, pilots will remain on an IFR clearance until in a position to commence a normal approach and landing. It should be understood that being in a position to make a normal approach and landing does not include any unusual maneuvering and the approach will remain stabilized.

Pilots may execute an instrument approach to one airport/heliport and proceed visually to another airport/heliport not served by an instrument approach. However, all cloud clearances required by FAR 91.155, minimum altitude requirements for FARs 91.119 and 135.203, and in uncontrolled airspace the weather minimums in 14 CFR Part 135.609 must be adhered to. A VFR flight plan will be filed or flight locating as outlined in this Manual will be utilized.

Contact approaches are not authorized.

PICs of turbine powered airplanes that do not possess 100 hours in type will increase landing minimums by 100 feet and ½ mile respectively. However, adjusted minimums need not exceed the ceiling and visibility required for that airport to be used as an alternate.

2.34 IFR Destination Requirements (Eligible On-Demand Operations)

A pilot conducting an eligible on-demand operation may begin an instrument approach procedure to an airport that does not have a weather reporting facility operated by the U.S. National Weather Service, a source approved by the U.S. National Weather Service, or a source approved by the Administrator if:

- An alternate airport that has a weather reporting facility operated by the U.S. National Weather Service, a source approved by the U.S. National Weather Service, or a source approved by the Administrator; is designated on the flight plan and

- The latest weather report issued by the weather reporting facility includes a current local altimeter setting for the destination airport. If no local altimeter setting for the destination airport is available, the pilot may use the current altimeter setting provided by the facility designated on the approach chart for the destination airport.
• An “eligible on-demand operation” is an on-demand operation conducted under Part 135 that meets the following requirements:

• Two pilot crew; the flight crew must consist of at least two qualified pilots employed or contracted by Air Methods.

• Flight crew experience; the flight crewmembers must have met the applicable requirements of Parts 61 and 135 and have the following experience and ratings:
 ° Total time for all pilots:
 • PIC – A minimum of 1500 hours.
 • SIC – A minimum of 500 hours.
 ° For multi-engine turbine powered aircraft, the following FAA certification and rating requirements:
 • PIC – Airline Transport Pilot and applicable type rating.
 • SIC – Commercial Pilot and instrument ratings.
 ° For all other aircraft, the following FAA certification and rating requirements:
 • PIC – Commercial Pilot and instrument ratings.
 • SIC – Commercial Pilot and instrument ratings.

• Pilot operating limitations; if the SIC of a fixed-wing aircraft has fewer than 100 hours of flight time as SIC flying in the aircraft make and model and, if a type rating is required in the type aircraft being flown, and the PIC is not an appropriately qualified Check Pilot, the PIC shall make all takeoffs and landings in any of the following conditions:
 ° The prevailing visibility for the airport is at or below ¾ mile.
 ° The runway visual range for the runway to be used is at or below 4000 feet.
 ° The runway to be used has water, snow, slush, ice, or similar contamination that may adversely affect aircraft performance.
 ° The braking action on the runway to be used is reported to be fair or nil.
 ° The crosswind component for the runway to be used is in excess of 15 knots.
 ° Wind shear is reported in the vicinity of the airport.
 ° Any other condition in which the PIC determines it to be prudent to exercise the PIC’s authority.

• Crew pairing; either the PIC or the SIC must have at least 75 hours of flight time in that aircraft make and model and, if a type rating is required, for that type aircraft, either as PIC or SIC.

2.35 IFR Enroute Requirements

IFR enroute operations shall comply with applicable FARs and Operations Specifications Paragraphs B031, B032, B034, B035, and B050, as applicable.

2.36 IFR Limitations

Flight is prohibited under IFR in Class G airspace unless Operations Specifications Paragraphs A014, C064, or H113 (as appropriate) have been issued and complied with.

2.37 Inadvertent Instrument Meteorological Conditions (IIMC) Recovery
The Base Lead Pilot at helicopter bases of operations, with the assistance of the Program Aviation Manager, will develop an IIMC recovery procedure and complete an IIMC Form (a sample of this form can be found in the Appendix of this manual, the actual form is located on FlightDeck > Resources > Corp Forms). This procedure will be posted at the respective base and available to the pilot in the aircraft. The pilot shall become knowledgeable with the procedure. The plan will be reviewed with each pilot on an annual basis and will be evaluated by the Check Airman conducting the annual check ride required by 135.293. The procedure will include at least the following information:

- The priority and most important aspect of an IIMC procedure is to maintain aircraft control. Positive control of the aircraft with reference to instruments must take priority over all other duties.
 - Attitude (Level)
 - Heading (Turn only to avoid known obstacles)
 - Power (Adjust to climb power)
 - Airspeed (Adjust to climb airspeed)
- Climb to the minimum safe altitude (MSA) to clear all obstacles in the area.
- De-goggle when safely able (if appropriate).
- Make all turns no greater than standard rate.
- Contact appropriate Approach Control/Center and Declare an Emergency. Squawk 7700 when able. Report location, altitude, heading, fuel status, and number of persons on board. State that you are inadvertent IMC and request assistance.

The following procedures shall be utilized in the following order of preference:

- Radar vectors to VMC conditions.
- Vectors to the closest approach.

Complete the approach procedure to landing or entering VMC conditions. Maintain VMC and land.

For the local area, determine the most likely airports and approaches for an IMC procedure and complete the IIMC Procedure Template. Ensure these approaches are available on the aircraft and reviewed with each pilot on an annual basis and evaluated by the check airman conducting the annual check ride.

Coordinating with the air traffic control (ATC) facility that is responsible for the area of operation of the base can be productive. If able, meet with the manager of the ATC facility and have them review the procedure so that they are familiar with it.

2.38 International Operations

For details on international operations, please see the Air Methods International Operations Manual located on FlightDeck.

2.39 Maintenance Inspection After Occurrence or Incident

At any time that safety of flight or airworthiness is in question, the pilot will discontinue the flight. A log book entry will be made and maintenance will be contacted. The aircraft will not be flown until maintenance has inspected and released the aircraft for flight to include a log book entry. Pilots who make an unscheduled
landing for reasons such as securing a door, a seatbelt, or to investigate a bird strike to non-rotating parts are authorized to resume flight if no damage has occurred.

2.40 Maintenance Operational Check – Post Maintenance

A conversation between the duty pilot and the mechanic must take place prior to any maintenance being performed on Air Methods’ aircraft.

Any maintenance performed must be entered in the Air Methods’ Record of Maintenance. For all routine maintenance performed in the field by a company mechanic, a “Conform Your Aircraft (CYA)” check or a “Required Inspection Item (RII)” inspection will be performed. A CYA check may be performed by a pilot when a second mechanic is not available. If a second mechanic is available, a RII inspection will be performed per the GMM RII guidance in Section 2, Maintenance Checks – Post Maintenance.

The CYA will include a thorough face-to-face briefing between the person performing the work and the pilot performing the CYA. The pilot performing the CYA is required to do a general overview of the area in which the maintenance was performed. The pilot should look for disconnected lines, proper safeties (including safety wire, cotter pins and lock tabs), oil or fuel, any cowlings/panels that were opened or removed and any components/lines that were repositioned or removed in order to facilitate maintenance.

The CYA check shall be performed before the aircraft is returned to service and will include at a minimum, a general overview for the following:

- Loose or missing hardware in the area of maintenance.
- Obvious defects in the area of maintenance.
- Loose hardware or foreign objects left on the aircraft.

A note shall be included in the corrective action entry, as follows: “CYA performed by_______” (the person performing the CYA will enter their initials in the blank space).

NOTE: Pilots performing the CYA will treat the action as they would a preflight check. The pilot’s initials on the Maintenance Log do not constitute the certification/acceptance of any maintenance work relative to approved part 135/145 inspection requirements.

2.41 Malfunction / Failure of Required Equipment

[135.91]

If any item of equipment required by FARs 91.205 (b) through (e), 135.149, 135.159, 135.161, and/or 135.163 becomes inoperative or unserviceable enroute, the PIC shall comply with the Aircraft Flight Manual procedures and FARs as applicable and discontinue the operation.

All mechanical irregularities discovered during the course of a flight will be brought to the attention of the maintenance department after the flight.

Pilots shall comply with the “Mechanical Interruption Summary Report (MIS)” and “Service Difficulty Reports” procedures listed in the Maintenance Section of this Manual.

2.42 Medical Oxygen Tanks – Filling and Changing

[135.91]
When necessary, Air Methods’ pilots may be authorized to fill and change out medical oxygen tanks in the company aircraft after they have been trained, qualified, and authorized to do the task with the Air Methods' Pilots Maintenance and Servicing Procedures. A record of this training and qualification will be kept in the pilot's file with the Chief Pilot.

2.43 Operating Near Other Aircraft

Air Methods’ pilots will not operate aircraft in formation flight. However, certain instances, such as photo flights or memorial services, may warrant operating near other aircraft. In those cases, only the pilot and necessary flight crewmembers will be on board the aircraft. In all cases, aircraft will not be operated in such a manner as to create a collision hazard.

All parties involved in operations near other aircraft will only conduct the operation after an extensive briefing. Pilots will remain in communication with each other and announce intentions over a predetermined discrete radio frequency. Under no circumstances will aircraft be operated closer than five rotor discs or wing-spans. The Chief Pilot or Director of Operations must grant approval prior to any such operations.

2.44 Overdue / Missing Aircraft

Air Methods has an overdue/missing aircraft policy, which all personnel will follow in the event of an overdue or missing aircraft.

Any Air Methods’ aircraft on an IFR flight plan that is reported by the Flight Service Station as being overdue or missing and the Pilot-in-Command has not called in by telephone as required will be considered overdue or missing.

Any aircraft on a VFR flight which fails to arrive at any given destination within a 15 minute time factor of the most recent estimated time of arrival (ETA), or fails to communicate with the Communication Center within 15 minutes of an unscheduled landing, or fails to communicate with the Communication Center for 15 minutes after the last required position report will be considered overdue or missing.

Upon expiration of the 15-minute time factor without communication, the communicator is to initiate the lost communications/overdue aircraft procedures.

The lost communications/overdue aircraft procedures will be followed step by step and all times and information will be filled in appropriately. These steps include:

- Calling the referring and receiving hospitals or agency to confirm the aircraft is not there. Contact should be made to the FBO of the intended landing airport, if applicable. Ask if they have been in radio contact with the aircraft and if so, the approximate time an ETA reported to their facility. Also, have the facility try and make radio contact with the aircraft.

- Make at least two attempts to call the aircraft on the appropriate frequency.

- Notify the appropriate Air Methods’ officials per the Air Methods’ PAIP program.

- Contact the Operational Control Center at 866-676-3442 to confirm that they do not know the status of the aircraft.

If the Communications Specialist is still unable to locate the aircraft, the following procedure should be followed:
• Compute, with the latest available information, the last known location of the aircraft.

• If the aircraft has not been located within 30 minutes of the initial expiration of the 15 minutes allotted time, the aircraft should be considered “Missing”. Only an Air Methods’ official can declare the aircraft officially “Missing”.

• At the time of declaring the aircraft missing, the Flight Service Station (FSS) or the Denver FSDO will be notified by the Director of Operations or Chief Pilot of Air Methods. The following information will be supplied:
 ◦ Tail number of the aircraft,
 ◦ Number of persons on board,
 ◦ Route of flight and common paths taken,
 ◦ Destination and ETA to destination, and
 ◦ Last known computed location of the aircraft.

• If applicable, additional company aircraft will be placed out-of-service for utilization of search and assist. If any of those aircrafts are on an assignment, they will complete their assignments first.

• The communication specialist should notify the receiving and sending facilities and speak with the Director of Nursing. The following information should be given:
 ◦ “At the present time the Air Methods’ aircraft that was on the way to your facility or departed your facility for (receiving hospital) is overdue”.
 ◦ Provide the patient’s name for clarification.

• After the aircraft has been located, all persons or agencies notified on the Communication Flow Sheet will be notified.

2.45 Overwater / Extended Overwater Operations

Overwater and extended overwater operations shall meet or exceed the following regulations: FARs 91.205, 135.165, 135.167, 135.168, and 135.183 as applicable.

Additional equipment, training, etc. may be required depending on the complexity of the operation.

An overwater operation is when an aircraft is operated for hire over water and beyond power-off gliding distance from shore. The term water means an ocean, sea, lake, pond, or river. Shore means that area of the land adjacent to the water of an ocean, sea, lake, pond, river, or tidal basin that is above the high water mark and excludes land areas unsuitable for landing such as vertical cliffs or land intermittently under water during the particular flight.

A single engine aircraft operated over water must be equipped with floats. It must have an approved life preserver readily available for each occupant and at least one pyrotechnic signaling device.

Approved life preservers and pyrotechnic signaling devices which are stored in the aircraft and maintained and tracked by Air Methods may not be removed from the aircraft (except in the case of emergency). Other equipment used by crewmembers is not the responsibility of Air Methods.

Multiengine aircraft that can be operated with the critical engine inoperative at a weight that will allow it to climb at least 50 feet a minute at an altitude of 1,000 feet above the surface as provided in the Airplane Flight Manual or the Rotorcraft Flight Manual as appropriate do not require floats but must have an approved life preserver readily available for each occupant and at least one pyrotechnic signaling device.
Additional requirements for extended overwater operations:

- Each flight crewmember, medical personnel/crewmember, and passenger shall wear an approved life preserver equipped with a locator light.
- Each aircraft shall maintain two-way radio communications with an appropriate Air Traffic Control facility.
- Each aircraft shall be equipped with a functioning GPS meeting the requirements of TSO C-129 or equivalent. Each GPS unit shall be equipped with a current database.
- During daylight hours, operations shall be conducted on either a VFR/DVFR or IFR flight plan.
- Operations conducted at night as defined by FAR Part 1.1 will be conducted on an IFR flight plan.

All survival equipment required by the FARs for overwater and extended overwater operations shall be maintained in accordance with applicable FARs and appropriate maintenance documentation...

2.46 Passenger Briefing

[91.517, 91.519, 135.23, 135.117, 135.127]

When any conscious and coherent patient/passenger or a non- Air Methods’ employee is being transported, the pilot-in-command will be responsible to ensure that he/she or a trained medical person will orally brief them.

The Pilot-in-Command shall ensure that the briefing is completed prior to taxi or takeoff. The briefing shall be supplemented by the Air Methods’ approved passenger briefing card for the make and model of aircraft operated and shall be available to each passenger.

The following items shall be briefed:

- No smoking.
- Use of seatbelts.
- If available, all seat backs should be in an upright position before takeoff and landing.
- Location and operation of passenger entry doors and emergency exits.
- Location of survival equipment.
- Location and operation of fire extinguisher.
- If over water, instructions and location for floatation gear and pyrotechnic devices.
- Ditching procedures and special instructions if the flight involves extended over water operation.
- For rotorcraft flights operated beyond autorotational distance from the shoreline as defined in 14 CFR Part 135.168(a), use of life preservers, ditching procedures and emergency exit from the rotorcraft in the event of a ditching; and the location and use of life rafts and other life preserver devices if applicable.
- Normal and emergency use of oxygen, if the flight is above 12,000 feet MSL.

2.47 Passenger Occupancy of a Pilot Seat and Manipulation of Flight Controls
The PIC will not allow persons other than a pilot employed by Air Methods Corp. who is qualified in the aircraft or an authorized safety representative of the administrator who is qualified in the aircraft and is checking flight operations, to manipulate the controls of an aircraft during flight. At the discretion of the PIC, a pilot seat may be occupied by a medical person/crewmember or a passenger. Whenever an FAA inspector who is performing the duties of an Aviation Safety Inspector presents an Aviation Safety Inspector Credential form (FAA Form 110A) to the PIC that inspector will be given free uninterrupted access to the pilot compartment of that aircraft. This does not limit the emergency authority of the pilot to exclude anyone from the pilot compartment in the interest of safety. A seat on the flight deck with a headset will be provided to the Administrator while conducting en route inspections. A PIC may allow a passenger to occupy a pilot seat in concurrence with the medical personnel/crewmembers. Passengers may include a family member of the patient being transported, ride-along program participant, emergency medical service personnel, or law enforcement personnel. Passengers must be properly briefed before flight operations begin.

2.48 Personnel Qualifications

All flight crewmembers are charged with the responsibility of maintaining their qualifications in keeping with the requirements outlined in the FARs for their assigned position. Qualifications include the pilot certificates and ratings appropriate for the assignment. Each crewmember shall keep a personal account of the due date(s), as appropriate, for all required; checks, training, recency of experience requirements, and flight physicals. Additionally, each crewmember will comply with all flight time and rest requirement as prescribed by the FARs. Whereas the company desires to keep its employees current, and will make every attempt to do so, lapses in qualification will be viewed primarily as the fault of the person whose qualification lapsed if the Director of Operations, Director of Maintenance, and/or Chief Pilot was not made aware of the pending lapse in advance.

2.49 Post Accident / Incident Plan (PAIP)

The Regional Aviation Director in conjunction with an appropriate Aviation Manager at each Program shall develop a PAIP. The appropriate Aviation Manager will coordinate with their respective communications center to ensure the PAIP provides timely notification to Air Methods’ Part 135 certificate management and other key Air Methods’ personnel. The PAIP will indicate who is to be notified and who is responsible to make the notification. The Accident Notification Requirements in Section 2 of this manual will be used to determine notification requirements.

NOTE: The Operational Control Center shall be notified by the Regional Aviation Director in writing at least 48-hours prior to initiating any practice PAIP drills in order to avoid non-compliance, false alarms and undue stress. This prior notification requirement is met by emailing details of the PAIP drill to occ@airmethods.com and receiving an acknowledgement. The PIC must be aware of practice PAIP drills prior to departure and advise the OCC prior to initiation. In the event the communications specialist is aware of a practice PAIP, he/she shall notify the OCC.

The following are the minimum required items to be included in the PAIP:

- Medical emergencies – Requiring an unscheduled landing.
• Weather or mechanical difficulties – those resulting in an unscheduled landing, in-flight abort or change in destination.
• Overdue aircraft – When an aircraft fails to reach its destination within 30 minutes of estimated time of arrival or overdue in-flight reports by 30 minutes.
• Actual emergency – Either reported via radios or notification from ATC.
• Post crash – Notification from another party that the aircraft has crashed.
• Procedures on notifying the Operational Control Center of an accident, incident or occurrence which affects or could affect safety of flight. The 24-hour contact number for the Operational Control Center is (866) 676-3442.
• Upon notification the Operational Control Center will contact the appropriate Air Methods Certificate personnel.
• Immediate notification of the Operational Control Center is mandatory following an accident, incident or overdue aircraft.
• The notification to the OCC shall include but not be limited to
 ○ PIC of the aircraft
 ○ Tail Number and Program Call Sign
 ○ Souls on board and if carrying a patient
 ○ Current location
 ○ Nature of the PAIP
 ○ Any damage or injuries
• Procedures to alert program security and public relations personnel, if necessary.
• Procedures to request assistance from law enforcement and other emergency programs.
• Procedures to perform an annual review of the PAIP to ensure changes in personnel and contact information are updated.
• At a minimum the plan shall be tested and evaluated annually.

The Regional Aviation Director will ensure that the PAIP plan for each program under their control is tested and evaluated on an annual basis. The Regional Aviation Director or his designee will be responsible for maintaining the documentation. An actual PAIP will qualify as the test that is required in this section.

2.50 Preflight Preparation

[135.23, 135.25, 135.65, 135.71, 135.209]

In making a decision to accept or reject a requested flight, each PIC will consider all relevant factors that might affect the safety of flight. These factors will include (but are not limited to) weather, FAR required fuel requirements, airport/heliport and navigation aid conditions, aircraft equipment and maintenance status, and physical and emotional condition. The pilot will also consider safety recommendations from medical and other involved personnel/crewmembers.

If a pilot is uncertain that a requested flight can be completed according to the requirements of this Manual and of the FARs, they shall notify the medical personnel/crewmembers on board, communications center, and others as appropriate. This notification shall explain the factors included in the pilot’s decision making process and provide insight into the pilot’s professional judgment. The pilot should give this notice with
minimum delay, and include acceptable alternative destinations and/or courses of action. In considering these possibilities, the pilot should seek input from the medical personnel/crewmember, communications center, or others as appropriate. It is the pilot's responsibility to ensure that their decision is made with safety and legality as the ultimate controlling principles.

For operations conducted under VFR, the PIC, in the absence of approved weather sources (reference Operations Specifications Paragraph A010), may use weather information based on their own observations or those of other persons competent to supply them.

As part of their preflight duties, the assigned PIC will note the date and aircraft flight hours as indicated in the aircraft logbook. The PIC will then compare those times to the Aircraft Status Report, retrievable on 411 to determine aircraft status.

The P.M. shift pilot will print the most current version of the Aircraft Status Report, transfer any pen and ink changes and place it with the aircraft maintenance logbook.

The PIC then must determine whether the flight or series of flights can be completed without any required maintenance item coming due before the aircraft returns to home base. If a flight cannot be completed without a maintenance item becoming overdue the PIC will immediately contact the duty mechanic for instructions. Under no circumstances will a PIC commence a flight if any required inspection time will be exceeded.

The PIC will review the aircraft Maintenance Record and aircraft status report in the aircraft to determine whether any discrepancies have been either deferred in accordance with the approved MEL, or corrected. If the PIC finds a mechanical irregularity that has not been either corrected or properly deferred, they will not take off, but will contact the duty mechanic for instructions. Each pilot who finds a mechanical discrepancy or any item related to aircraft airworthiness will document that discrepancy in the aircraft logbook. Once the aircraft is safely on the ground, the “CYCLIC/CONTROL YOKE WARNING COVER” procedure shall be adhered to (reference Section 2).

The PIC will determine that for deferred and corrected mechanical irregularities the aircraft has been certified approved for return to service by an Airframe and/or Powerplant Mechanic (or by the Director of Maintenance). This certification will appear on the aircraft maintenance log in the area of the form reserved for remarks and maintenance use.

The PIC shall become familiar with all available information concerning each flight including:

- For IFR flights, or flights not in the vicinity of the airport/heliport (helistop); weather reports, forecasts, alternates, and known air traffic delays.
- For all flights; runway lengths, takeoff and landing requirements as indicated by an approved Aircraft Flight Manual, if a flight manual does not exist, the pilot information manual.
- NOTAMs (FDC, D, and L as applicable), including TFRs.
- Condition of navigation facilities.
- Weather (including hazards).
- Medical control, flight following centers, and medical personnel/crewmembers will be kept abreast of any weather or operational limitations, which may affect medical flights.

2.51 Pilot’s Maintenance and Servicing Procedures
In certain cases, Air Methods’ pilots may be authorized to perform specific maintenance on an aircraft. The pilot will be trained, qualified, and authorized to do the task in accordance with Air Methods’ Pilot Maintenance and Servicing Procedures (PMSP). Any preventive maintenance performed by the pilot will be documented in the aircraft maintenance records in accordance with FAR 43.9 and the Air Methods’ PMSP. The completed training record and quiz shall be forwarded by the Authorized Instructor to the Pilot Records Department via the proper 135FORMS email address for disposition into the Pilot’s training records. Pilot Training Records Specialists are agents for the Chief Pilot. Servicing items such as refueling, adding oil to engines and gearboxes are not considered preventive maintenance. Pilots will not perform specific maintenance on any aircraft or system for which they have not received training.

2.52 Risk Assessment Program

For details on the risk assessment program, please see the Operations Risk Assessment Program located on FlightDeck > Resources > Corp Pubs > Flight Operations Publications.

2.53 Runway Incursions

The FAA defines runway incursion (in part) as, "Any occurrence at an airport involving an aircraft, vehicle, person, or object on the ground that creates a collision hazard or results in a loss of separation with an aircraft taking off, intending to takeoff, landing or intending to land". It is the responsibility of each pilot (PIC or SIC) operating an Air Methods aircraft to prevent runway incursions.

The following procedures, though not all inclusive, when utilized will help prevent runway incursions:

- Pilots operating aircraft without a SIC shall review airport diagrams prior to entry into the traffic pattern or prior to hover/taxi operations. Airplane pilots should have the airport diagram out for reference during all taxi operations.
- Pilots operating aircraft with an SIC will have the airport diagram out and available for reference by the pilot not flying during all taxi operations.
- Review all NOTAMs for runway/taxiway closures and construction areas.
- Request progressive taxi instructions when unsure of the taxi route.
- Turn on aircraft lights while taxiing.
- It is advisable to write down taxi instructions so as to not forget instructions and to act as a guide for reading back clearances.
- In a two pilot crew configuration, any disagreement over taxi instructions must be resolved prior to beginning the taxi operation.
- All pilots shall read back all taxi and hold short of runway instructions in the order issued by ATC. Reading back instructions in the order issued by ATC will help prevent “hear back/read back” errors. Standard phraseology will be used to facilitate clear, concise communication between the flight crew and ATC.
- While taxiing, monitor instructions to other aircraft and question ATC as soon as possible if a conflict between your and another becomes apparent.
- Prior to taking a runway for takeoff, scan the full length of the runway and approach paths for other conflicting aircraft.
- Do not hold in position for an extended period of time on an active runway without direct communication with ATC. This is especially important at night.
- Clear the active runway on rollout as quickly as possible, and then wait for taxi instructions before further movement.

- When approaching to land, monitor ATC instructions to other aircraft to “taxi into line up and wait” for the runway you are cleared to land on. Also be aware of other aircraft being cleared to land on the same runway you have been cleared to land on.

- At uncontrolled airports, or airports without operational control towers:

 ◦ Follow Standard air traffic procedures. Utilize AF/Ds or other similar commercial products to determine if other than standard traffic pattern procedures are dictated for the particular airport where operations are planned.

 ◦ Monitor CTAF or UNICOM as recommended in the AIM.

 ◦ State the name of the airport at the beginning and end of each radio transmission.

Further guidance may be found in the Aeronautical Information Manual.

2.54 Safety Belts, Child Restraints, and Carry On Baggage

[91.517]

Each required flight crewmember, occupying a station equipped with a seat belt and/or shoulder harness, shall have that seat belt and (when equipped) shoulder harness fastened at all times when at that station. The shoulder harness may be removed if it inhibits performance of the individual’s required duties, except during takeoff, approach, landing, and surface operations.

Each passenger, including medical personnel, who has reached their second birthday, shall occupy an approved seat or berth with a separate safety belt properly secured about them during surface movement, takeoff, and landing.

A child who has not reached their second birthday may be held in the lap of an adult. The adult and child may not share a restraining device.

Any child seat utilized must conform to all applicable motor vehicle standards and have on it, in red letters, the following statement: “THIS RESTRAINT IS CERTIFIED FOR USE IN MOTOR VEHICLES AND AIRCRAFT.” Children’s seats not bearing the above statement must bear a label showing conformity with a foreign government or United Nations Standard. Children will not be placed in a booster type seat.

All pilots must ensure to the extent possible that passengers and cargo (including carry-on baggage) are checked and found free of hazardous material and unauthorized weapons.

Cargo (including carry-on baggage) shall be carried in an approved rack, bin, or compartment. All cargo (including carry-on baggage) shall be secured by seat belt or approved tie down device, which will provide strength to eliminate shifting under normal anticipated flight and ground conditions.

All cargo and carry-on baggage shall be stored so:

- As to not impose loads on seats or structures which would exceed certificated load limits.
- That it is placed or covered so as to prevent injury to occupants.
- That it is located so as to not block isles between crew and passengers, emergency or regular exits, seat belt, and no smoking signs.

2.55 Search / Assist Flight Limitations
Air Methods does not engage in search and rescue operations since its primary function is medical transportation. A search assistance operation is defined as a flight operation conducted to assist in a search. Pilots may accept requests for search assistance for the sole purpose of locating what is being searched for. Pilots will relay the position to the appropriate agency or communication center. **Under no conditions will Air Methods' pilots conduct rescue operations.**

NOTE: This section does not apply to Class D Operations (external load).

Pilots may accept requests for search assistance once they have determined that the request does not constitute a rescue or include any elements of a rescue operation. If the pilot has any doubt concerning the request, he or she will not accept the request or contact the appropriate manager for guidance. Prior to departing on a search and assist flight; the pilot MUST notify the Operational Control Center 866-676-3442 of the request.

In all cases, the pilot will take the most conservative approach.

The following operations are prohibited:

- Participation in any rescue operation.
- External load operations of any kind.
- One skid landings.
- Jumping or rappelling from the aircraft.
- Sling loading personnel or equipment with the aircraft.
- Open doors during flight.
- Out of ground effect hovering.

These prohibited operations are not inclusive of every type of rescue. Due to the broad scope of what constitutes a rescue, it is impractical to attempt to list every possibility here. It is incumbent upon the pilot to determine that the flight operation is, in fact, not a rescue of any type. If a request for search assistance contains an element of a rescue, the pilot will not accept the flight request. If a search assistance flight in progress appears that it may involve any element of a rescue, the flight will be aborted. Search assistance requests from law enforcement agencies to help locate criminals or fugitives will not be accepted. Any operation other than normal “on scene” operations are prohibited. Pilots will maintain minimum altitude for VFR as specified in the General Operations Manual. Except for takeoff and landing, the minimum airspeed for search operations is the aircraft’s Vy. Pilots will fly the aircraft only and will not participate in the search effort. The medical crew or passengers such as law enforcement officers will be the primary searchers.

Dropping objects such as bottled water or survival kits shall be permitted when authorized by the respective Regional Aviation Director, Aviation Compliance Manager, Chief Pilot or Director of Operations and in compliance with GOM Section 2 and FARs.

2.56 Securing of Cargo and Aircraft

[135.87]

The loss of the smallest items from the cabin or baggage area, such as a rag or tie-down rope, can result in the loss of a tail rotor, aircraft, life, and/or property, therefore:

- The loading and unloading of the aircraft shall be at the discretion of the pilot in command and under his/her supervision whenever possible.
• The pilot shall brief personnel on securing of cargo, emphasizing the importance of proper tie-down.

• All containers shall have lids or covers to prevent small objects from being sucked out. Lids must be securely fastened in a manner that will prevent opening in flight.

• All sharp cutting tools or objects will be secured in a manner that will prevent injury to passengers or the damage to the aircraft.

• The pilot must explain to ground crew personnel and off-loading passengers, that all light weight objects on the ground near the take-off area must be secured to prevent being blown into rotor blades or causing injury to personnel.

2.57 Shift Change and Post Mission Briefings

At the change of each shift the PIC will conduct a briefing of the duty medical personnel/crewmembers and any others that might be appropriate. As a minimum, the topics discussed will be:

• Weather for the duty period
• Mechanical issues with the aircraft (including the medical interior and upcoming aircraft maintenance/inspections)
• Flight restrictions required when operating with inoperative equipment
• Public relations events
• “Third” riders (or “ride-along”),
• Scheduled training,
• Any other events that may impact that duty period’s operation.

Post flight mission debriefings will also be completed. Items for discussion will include but not be limited to: safety issues,

• Communications problems (with aircraft, portables, or other communications equipment)
• Weather concerns
• Aircraft issues
• Any other noteworthy items

2.58 Stabilized Approach Concept

Pilots of both airplanes and helicopters will adhere to the stabilized approach concept which involves maintaining:

• The aircraft on the correct flight path (± one dot for localizer courses and ½ scale for non-precision approaches).

• Only small changes to pitch and roll to maintain the approach.

• The aircraft is on speed (speed as briefed for fixed wing aircraft, constant power setting for helicopters).
- A stable descent rate (± one dot of glide slope for precision approaches and stable rate for non-precision approaches).
- A stable aircraft configuration (landing gear, flaps, etc.).
- Checklist completed.

If the approach becomes unstable at any point, a missed approach will be executed. The basic tenets of a stabilized approach are early planning, and once the approach is initiated, use of constant power settings while using pitch to maintain rates of descent or glide slope.

Stabilized approaches must be established before descending below the following altitudes:

- HAA +500 feet during VFR or visual approaches and during instrument approaches when VMC.
- HAA +500 feet or MDA (whichever is lower) when a circling maneuver is to be conducted after the instrument approach.
- HAA or HAT +1000 feet during any straight-in instrument approach conducted in IMC.

2.59 Sterile Cockpit

[FAR Part 135.100]

FAR Part 135.100 prohibits any activity during a critical phase of flight which could distract any flight crewmember or interfere with the performance of their duties. It defines “critical phase” of flight as all ground operations including taxi, takeoff, landing, and all other flight operations below 10,000 feet, except cruise flight.

When medical personnel are not trained crewmembers, the Air Methods’ crew coordination management philosophy values their input, especially during takeoff, landing, and scene operations. Pilots must engage the medical personnel in a continuous, diplomatic, educational effort to make them aware of the need to limit conversations on the ICS during critical phases of flight to topics related to the conduct of the flight.

When medical personnel have a patient onboard whose care required their voice interaction, the resulting conversation is essential to patient care but not to the conduct of the flight. As a result, the pilot may have to isolate the medical personnel on the ICS.

It is essential that medical personnel understand that they must limit the use of the call button during these times to urgent situations requiring immediate response from the pilot.

It is essential that strict adherence to the sterile cockpit concept be maintained, i.e. the pilot will make every reasonable effort to eliminate cockpit distractions to include light from the cabin and medical intercom traffic that could result in less than full attention to operating the aircraft.

2.60 Temporary Flight Restrictions (TFRs)

Air Methods’ pilots shall check NOTAMs so as to maintain awareness of Temporary Flight Restrictions and coordinate with the controlling agency when operating within them. Active TFRs should be noted on the Local Area Hazards Map. Additionally, the pilot will notify the Communication Center of TFR's that may impact a flight.

2.61 VOR Equipment Checks
[91.171]

All Air Methods’ aircraft operated under IFR will receive a VOR operational check at intervals not to exceed 30 days. VFR aircraft will receive a VOR operational check every 6 calendar months. Any method described in FAR 91.171 may be used to complete the check. A logbook entry showing completion will be made to include:

- Date completed.
- Bearing error.
- Place.
- Method(s) of compliance.
- Signature/certificate type/certificate number.

Discrepancy: 30 Day VOR check due.

Corrective action:

DATE: ____________

Complied with 30 Day VOR Operational Equipment Check in accordance with the Air Methods Operation Manual and FAR 91.171. Frequency used _____, indicated bearing error of _____. VOR Equipment is within limits.

SIGNATURE: ____________________________

CERTIFICATE # and TYPE_________________________
2.62 Weather Sources and Providers Approved for Aircraft Flight Planning

Weather sources for VFR and IFR flight planning are listed in Operations Specification A010. Air Methods pilots will use one or more of those sources listed, either directly or through an approved provider, to obtain required weather forecasts and reports for the flight.

Air Methods provides each base with an Aviation Sentry Account from Schneider Electric. This is the preferred provider and the service used by the Operational Control Center. This is the only provider that is supported by the Air Methods Service Desk. Air Methods preferred approved providers are:

- Telvent DTN (Schneider Electric)
- WSI
- DTC DUAT
- CSC DUATS
- Foreflight

Any Internet package/provider that uses the sources listed in A010 for weather information may be used at the pilot’s discretion.

In accordance with §135.213(a), if NWS or other approved weather sources are not available for VFR operations, a pilot in command (PIC) may use weather information based on his or her own weather observation or on the observations of other competent persons.

Pilots are authorized to use the experimental Aviation Digital Data Service (ADDS) HEMS Tool to support VFR flight planning. However, the tool will not be used as the sole source of weather information and will only be used to make a “no-go” decision when results conflict with authorized weather sources.

Pilots are encouraged to take full advantage of available weather information during every flight. Approach Controls, Air Route Traffic Control Centers, Flight Service Stations, HIWAS, AWOS, ASOS, AIRMETs, SIGMETs, and TWEBs, as well as Operational Control Center Specialists can provide pertinent, up-to-the-minute data to help the pilot make informed decisions concerning the weather.

2.63 Weight and Balance Control

[135.23, 135.185]

Determining Aircraft Operational Empty Weight (OEW):

Prior to being placed into service, it shall be determined that each Air Methods’ aircraft has current weight and balance data available in the appropriate approved Aircraft Flight Manual (AFM). If the information is found to be outdated and/or inaccurate, the aircraft will be weighed and the empty weight and CG location established. Aircraft will be weighed per the appropriate AFM or Maintenance Manual (MM) for that make and model aircraft. The weight and balance record will be kept in the approved AFM and shall be on board the aircraft during all operations.

In addition to the guidance given in the aircraft MM, the following equipment (as appropriate) shall be included in the OEW:

- Stretcher or litter
- Secondary stretcher or litter
- Full and operational ready O2 system
- Full E-bottle
- Duals removed and dual covers installed
- Other medical equipment as appropriate

FAR 135.185 requires all Air Methods’ multi-engine aircraft be weighed every 36 calendar months. Aviation personnel may determine whether an aircraft complies with this regulation by checking the aircraft maintenance logbook in the aircraft. All single engine aircraft will be weighed when a major alteration has appreciably changed empty weight and CG.

Pilot-In-Command (PIC) Responsibilities:

- Before takeoff, the PIC will be responsible for the proper loading of passengers (including medical personnel), carry-on baggage, and cargo in the aircraft. Items placed in the baggage compartment of helicopters shall be loaded from front to back and secured in accordance with the aircraft flight manual. The PIC shall complete the required sections of the load manifest form before takeoff, as appropriate to multi engine or single engine operations.
- The PIC will utilize at least one of the following methods for computing weight and balance data:
 - The PIC will use the manufacturer’s supplied weight and balance data including loading charts, graphs and supplemented by current alterations and changes; to calculate and account for all loading conditions and interior configurations as per the applicable approved aircraft flight manual and approved Pilot’s Maintenance & Servicing Procedures. The calculations may be completed by a computer program, an approved plotter and graph system, or chart.

Patient/passenger weights will be determined by one or a combination of the following:

- On inter-facility flights (one hospital to another), the sending facility will obtain the patient/passenger weight.
- On trauma call flights (accident scene), the trained and experienced ground and/or medical personnel will estimate the patient/passenger weight when lifting the victim.
- If the patient/passenger is conscious and coherent, they will be asked their weight. 10 pounds will be added to the solicited (asked) patient/passenger weight.
- In any case the pilot may use the standard average passenger weights as listed below:

<table>
<thead>
<tr>
<th>STANDARD AVERAGE PASSENGER WEIGHTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(passenger weights do not include carry-on baggage)</td>
</tr>
<tr>
<td>Average passenger weight</td>
</tr>
<tr>
<td>Average adult male passenger</td>
</tr>
<tr>
<td>Average adult female passenger</td>
</tr>
<tr>
<td>Child (2 to 12 years)</td>
</tr>
<tr>
<td>“Plane-side” loaded baggage</td>
</tr>
</tbody>
</table>
Removable medical equipment (bags, monitors, etc.) shall be weighed every 6 months and recorded in a reliable (accurate and able to immediately produce) record. The PIC shall use these weights when computing weight and balance data.

The use of “standard average weight” figures does not authorize the PIC to exceed the weight and balance limitations as outlined in the appropriate approved aircraft flight manual.

When medical personnel or passenger(s) board the aircraft, they will immediately notify the PIC of any carry-on equipment/baggage, the desired placement of each item, and the weight of each item. If the actual weight is not able to be determined, the PIC may use the “plane-side” loaded baggage weight found in the table above. The PIC shall adjust the weight and balance computations as required to ensure that the aircraft remains within the weight and balance limitations as outlined in the appropriate approved AFM. If the PIC determines that the carry-on items or portions of them cannot be carried safely, the affected item(s) will not be carried on board the aircraft.

For multiengine aircraft, each PIC is responsible for the preparation and accuracy of a load manifest in duplicate containing information concerning the loading of the aircraft. The PIC will record the results of these computations on the Air Methods’ Load Manifest form (DFL). The PIC will leave a copy of this form in the aircraft until arrival at the final destination of the flight. Air Methods will keep a copy of this form on file at its respective bases for a minimum of 30 days after the completion of the flight.

For additional information on weight and balance, please see the General Maintenance Manual, Weight and Balance section.

2.64 Wind Limitations

Pilots shall comply with any wind limitations as listed in the appropriate aircraft flight manual.
3. Flight Operations – Helicopter Specific

[135.227]

3.1 Frost Operation

Light accumulations of frost on the rotor system may be removed by means of the following procedure:

- Follow normal starting and run-up procedures.
- Shutdown the aircraft using normal procedures.
- Visually check all aircraft surfaces for evidence of frost.
- Check inlet barrier filters for ice.
- All remaining frost must be removed.
- If no frost is present, the helicopter may continue the assigned mission.

NOTE: This procedure does not apply to icing build-up of any degree.

3.2 Helicopter Night Vision Goggle Operations (HNVGO)

The following procedures are applicable to all HAA flights at night employing night vision goggles conducted under Title 14 CFR parts 91 and 135.

HNVGO will only be conducted in aircraft with an approved Supplemental Type Certificate (STC) authorizing such operations. The Rotorcraft Flight Manual Supplement (RFMS) must be current and retained in the Rotorcraft Flight Manual (RFM).

3.2.1 Aircraft Lighting

- Only the internal aircraft lighting authorized by the STC may be utilized during HNVGO.
- External lighting: Position lights will remain on for all night operations. The aircraft external lights will not be modified, i.e. taped, painted, or an IR filter installed over the light. The anti-collision light and/or strobe light(s) may be turned off when the PIC determined that, because of operating conditions, it would be in the interest of safety to turn the lights off. A landing light, searchlight, and/or night sun will be used for all take-off and landing’s unless environmental conditions preclude use of the lights, i.e. blowing snow.
- Blackout operations (all external lights off) are not authorized.

HNVGO are authorized within and outside of the local flying area designated for each base. Weather minimums as listed in Operations Specifications Paragraph A050 apply to all HNVGO operations. At no time will a pilot accept a flight, under NVGs, that they would not accept for unaided flight, given weather considerations.

3.2.2 Pre-mission Planning; Aircraft Performance Requirements

- In addition to normal pre-mission planning, terminal and area forecasts should be obtained and analyzed with particular emphasis on temperature/dew point spread, cloud cover and visibility, sunset, moon phase, moonrise and moonset for all phases of flight.
• During enroute phases of HNVGO no pilot will operate below 500 feet AGL.
• Prior to initiating an approach, an aided or unaided high reconnaissance shall be conducted at or above 500 feet AGL.
• For HNVGO, only takeoffs, landings, are authorized below 300 feet AGL.

3.2.3 Abort / Go-Around Criteria

The decision to go-around should be made before descending below obstacles or decelerating below effective translational lift. A decision to go-around should also be made if visual contact with the touchdown point is lost.

3.2.4 No Pilot or Crewmember Shall Conduct HNVGOs unless:

• He or she has completed Initial, Recurrent, Re-qualification, and/or Transition training in accordance with the approved Air Methods NVG Training Program.
• The pilot meets the currency requirements of FAR 61.57(f).
• The medical crewmember has completed three (3) HNVGO in the previous 180 days.

3.3 NVG Currency

3.3.1 Determining NVG Look Back Periods

Pilots must utilize night vision goggles while performing and logging six (6) helicopter night vision goggle operations (HNVGO) as the sole manipulator of the flight controls. To carry passengers, the look back period begins two (2) calendar months prior, not including the current month of the flight. To act as NVG pilot in command when passengers are not carried, the look back period begins four (4) calendar months prior, not including the current month of the flight.

3.3.2 Determining NVG Currency

To determine currency include any HNVGOs logged during the appropriate look back period and the current month. The four (4) calendar month look back period provides the opportunity to log additional HNVGOs to satisfy currency requirements to carry passengers. Regaining currency to carry passengers must be done by the pilot alone and to an improved area. (See NVG Proficiency Check below if outside of these parameters).

3.3.3 NVG Proficiency Check

An NVG Proficiency Check is required for pilots who have been trained and qualified by Air Methods in the use of night vision goggles, but have not flown using night vision goggles within the four (4) calendar month look-back period and current month as defined above. An NVG proficiency check shall consist of all NVG maneuvers listed in the Part 135 Checking Module for Helicopters in the Pilot Training Program, for the appropriate type helicopter.

3.3.4 NVG Currency Training for Medical Crewmembers

NVG flight training is required for a Medical Crewmember who has exceeded a six (6) month HNVGO currency requirement. The training, which consists of three (3) HNVGOs, will be accomplished with an NVG qualified and current pilot-in-command and without a patient. This can be accomplished in an improved or unimproved area.
3.3.5 Helicopter Night Vision Goggle Operations (HNVGO)

A helicopter night vision goggle operation consists of a before takeoff check, takeoff, climb out, cruise, descent, approach phase of flight, and landing. Hovering tasks, area departure and area arrival tasks (initial reconnaissance), transitioning from aided flight (aided flight means that the pilot uses night vision goggles to maintain visual surface reference) to unaided night flight (unaided night flight means that the pilot does not use night vision goggles) and back to aided night flight. HNVGO’s must be performed in the same category, class and type, if a type rating is required. Example: Rotorcraft / Helicopter / Type (if required).

Pilots shall record flight (unaided night time and aided night time, including HNVGO operations) and duty time in the Pilot 411 system and on the Air Methods Record of Airman Flight and Duty Time. The flight time and duty limitations of 14 CFR Part 135.263 and 135.267 apply to all pilots conducting passenger-carrying operations.

3.3.6 Crew Resource Management and Crew Briefings

For HNVGO operations below 300 feet AGL at least one other person, if required by the RFMS, shall be equipped with NVGs during the landing to assist in clearing the site. The other required person, when able, will be located on the side opposite the pilot, in either the front or back compartment. The “other required person” referenced in this paragraph must be current and trained in accordance with the approved Air Methods NVG training program. Due to the limitations of NVGs, the implementation of CRM during aided operations is paramount to safe and effective operations. Good teamwork requires positive communication between the pilot and medical crewmembers. During flight planning and crew briefings, the pilot will brief the medical crew the following:

- Type of flight; aided, unaided or both
- Weather for the route
- Illumination
- Lunar position (moon)
- Obstacles along the route
- NVG deficiencies
- Crew experience
- Abort criteria

The pilot will analyze the route of flight; identify aids to navigation, visual navigation cues, potential difficulties and emergency landing areas as needed. When operating close to the ground, the medical crewmember(s) must warn the pilot anytime he/she detects an unexpected deviation from the intended airspeed or altitude. These deviations include aircraft drift, unusual altitude, excessive change in rate of closure, or any unsafe condition.

The pilot will follow the practice of “see & avoid” at all times. The crew will clear the immediate area in all directions during hovering and taxi operations and left, right and overhead before and after takeoff. The crew will use clearing turns to clear the area before making any climbs or descents. Each crewmember is responsible for clearing within their field of view.

- Directing Assistance: The pilot will direct the crewmembers when assistance is needed. Crewmembers will announce when they divert their attention from outside the aircraft to inside the aircraft for more than a few seconds.
Announcing Decisions: Crewmembers will announce decisions anytime actions deviate from the previously briefed procedures or an action of one crewmember affects the performance or responsibilities of another crewmember.

Offering Assistance: Crewmembers will offer assistance when information or assistance is requested, when the pilot deviates from normal or expected actions, and anytime a crewmember sees and/or recognizes anything that could pose a hazard to flight.

Acknowledging Actions: All announcements or directives should be acknowledged by the intended receiver by a short and positive response indicating the message has been received.

Standard or Common Terminology: Using common terms and standard phraseology in the aircraft minimizes confusion and reduces the likelihood of misunderstanding. Use explicit terms and phrases. Use terms that give object, direction and distance (e.g. "tree on the left side", "traffic, 2 o’clock high, 1 mile"). Use prominent terrain features instead of headings (e.g. "Turn left towards the hill at your 2 o’clock position", "straight ahead to the pond").

Example of terms that describe motion
- Fast
- Slow
- Stop
- Turn
- Hold

Example of terms that describe a direction
- Forward
- Back
- Right
- Left
- Up or Down

In the event of Inadvertent IMC pilots will utilize the IIMC recovery procedure in this manual.

3.3.7 Helicopter NVG Maintenance Requirements

The helicopter will not be used for HNVGO unless it is maintained in accordance with the helicopter Instructions for Continued Airworthiness and/or AAIP as appropriate. The required NVG preflight checks will be completed prior to HNVGO in accordance with Air Methods Corporation Night Vision Goggles Pre-Operational Checklist (a sample of this form can be found in the Appendix of this manual – the actual form is located on Flight Deck > Resources > Corp Forms) or manuals TMF4949-10 Section IV and M949 Manual No. D205689-073 Table 2-2. Any NVG that does not pass the required checks is prohibited for use in HNVGO.

Each NVG device shall have a maintenance log, which will be reviewed prior to flight and completed upon completion of each HNVGO. The following will be recorded on this log:

- Unit S/N
- Last and next inspection dates
- Date of use
- Pilot/crewmember name
- Pilot certificate number
Remarks (irregularities and discrepancies)

The NVG six month maintenance inspection records will be kept with the NVG maintenance log.

The Program Aviation Manager, Senior Lead Pilot, or Lead Pilot at each program utilizing NVG’s or has NVG’s assigned will be responsible for maintaining the NVG’s and to ensure the required inspections are being accomplished. Additionally, the Program Aviation Manager, Senior Lead Pilot, or Lead Pilot will update and keep current the “NVG List” on the “135 Aviation Ops-Air Methods” page of the company intranet with the make, model, serial number, and the date of the last 180 day inspection for each set of goggles being utilized or assigned to their program. The Regional Aviation Manager will audit the NVG List on a monthly basis.

These sections only contain portions of our NVG program. For more details on Night Vision Goggle security, records, maintenance, repair, and 180-day certification requirements and instructions please see the NVG SOP located on FlightDeck > Resources > Corp Pubs > Materials Management Publications > Night Vision Goggle Publications.

3.4 Heliport / Landing Zone Diagrams

Each helicopter base will develop, and keep current, books or folders containing information on each heliport or pre-designated landing zone (LZ) from which pilots might reasonably be expected to operate. One book (electronic or printed) will be maintained as a flight planning device at the base.

As a minimum, the base copy of these books or folders will contain a graphic or textual depiction of the heliport/LZ, the municipality and hospital name or pre-designated LZ identifier, the heliport/LZ size, lighting, and obstructions. Other recommended information may include distance and direction from the base location, suggested fuel load for one way or round trip, and closest fuel location.

As a minimum, the aircraft copy of these books or folders will contain the same information as listed above, however the graphic depiction may be replaced by a textual description of the heliport/LZ. Use of these books or folders does not relieve the pilot of the requirement to conduct a reconnaissance to verify the landing area condition and obstructions.

3.5 LAHSO (Land and Hold Short Operations)

LAND AND HOLD SHORT: Is the practice of conducting simultaneous operations on two intersecting runways. LAHSO includes landing operations to hold short of an intersecting runway, taxiway, predetermined point, or an approach or departure path.

Air Methods’ helicopters are not authorized to conduct Land and Hold Short Operations. It is important for the pilot to know the proper procedures to utilize to not accept a LAHSO procedure.

Active LAHSO operations for a particular airport will be announced on the airport ATIS. This announcement could contain the following information: LAHSO in effect, or Expect landing on Runway 22 to hold short of Runway 27.

When ATIS is acknowledged, PIC will advise ATC that LAHSO cannot be accepted.

NOTE: Refer to the Aeronautical Information Manual, Paragraph 4-3-11.

3.6 Landing Zone Limitations
The landing zone will normally be at least twice the overall length and width of the helicopter to be used, and have a reasonable approach and departure path; which will not require exceeding the performance capability of the helicopter used. Landing zones may have any shape.

As a minimum, obstructions shall be cleared by 30 feet during approach and departure. When on the ground there will be a minimum of 15 feet clearance from obstructions.

The pilot must also be able to determine wind direction from a lighted indicator, two-way voice communications, or other reliable means. Downwind approaches and takeoffs shall not be attempted with a tail-wind component exceeding the aircraft manufacturer’s flight limitation.

Rates of descent shall, when able, be kept below 200 feet per minute when less than 300 feet above the roof top or confined landing area. Steep approach angles with a rate of descent greater than 200 feet per minute shall be avoided.

The practice of allowing medical attendants to open doors for any reason other than an emergency during landing and takeoff from landing zones is prohibited. In the past, some pilots have allowed medical attendant passengers and medical crewmembers to assist in clearing obstructions during landing and takeoff from landing zones by opening cabin doors to afford a better view. This practice induces unacceptable risks such as objects falling out of the aircraft possibly striking the tail rotor. If an LZ is so small or replete with obstructions that a safe landing cannot be ensured without someone looking out an open door, the pilot shall reject the LZ and find somewhere more suitable for landing.

For night use, all landing sites (hospital or scene) must be marked by flares, vehicle lights, or by other suitable ground based light sources which will provide adequate illumination of the site and provide adequate marking for obstructions which may create a potential hazard during approach, hover, taxi, and departure operations.

3.7 Landing Zone Safety and Crowd Control

Landing zones at scenes, day or night, must be secure prior to commencing an approach. Confirmation of a secured landing zone should always include two-way radio communication with ground personnel. If two-way radio communication is not available, the pilot shall visually check for landing zone security during the high reconnaissance.

To maintain a safe environment when operating into a landing zone, one of the following procedures will be utilized:

- **Aircraft will be shutdown.** At any time when the security of the scene is in question, and/or no positive crowd control is actively in place, one crew member shall remain in the vicinity of the aircraft and provide scene security until the pilot shuts down the aircraft.

- **Aircraft power will be reduced to ground idle or a reduced power setting as specified in the Aircraft Flight Manual.** Altitude / Auto Trim mode shall be off and SAS mode selected if appropriate. Controls will be secured in one of the following manners, positively locked, force trim on or frictioned as not to move. The pilot will get out of the aircraft and guard the area around the aircraft. The pilot shall stay within the rotor diameter of the aircraft.

- **Aircraft power will be reduced to ground idle or a reduced power setting as specified in the Aircraft Flight Manual,** pilot will stay in seat in cockpit, and a trained crewmember will guard the area around the aircraft.
Aircraft power will be reduced to ground idle or a reduced power setting as specified in the Aircraft Flight Manual, pilot will stay in seat in cockpit, and a trained crewmember will brief a first responder, such as a law enforcement officer or fireman. After being briefed, the person briefed will ensure that no one approaches the aircraft without the knowledge of the pilot. The contents of the briefing that the crewmember will give to the appropriate first responder is as follows.

- Stay at least 50 feet from aircraft.
- Do not allow anyone to approach the aircraft without permission from the pilot or a crewmember.
- Anyone that approaches the aircraft must be accompanied by a crewmember.
- Crew will assign personnel to help carry the stretcher to the aircraft.
- Remember to exit in the same direction that you approached the aircraft.

Landing zone debris considerations:

- Approaches will be made to the ground whenever possible.
- Avoid hovering at the scene.
- Takeoffs should be made directly from the ground.

A tail rotor guard may be utilized; this individual will be briefed by the PIC or properly trained medical personnel/crewmembers. However, the PIC retains responsibility for safety around the aircraft, this responsibility cannot be delegated.

3.8 Loading and Unloading Patient / Passengers

The loading or unloading of passengers or patients while the rotors are turning is only allowed if the pilot and/or properly trained medical person is outside the helicopter to guide and direct anyone who approaches the aircraft. Ground personnel will not come beneath the rotor disc until directed to do so by the Pilot in Command. The pilot and/or properly trained medical person must be constantly alert to prevent anyone from coming near the tail rotor. The pilot should only be used if flight controls can be locked in place or fricitioned so as not to move. Whenever practical, the loading and unloading of passengers or patients will be done with rotors not in motion.

Patient condition and a consensus of the pilot and medical personnel/crewmembers will determine if the helicopter may be enplaned/deplaned with rotors turning. In all cases, the PIC determines whether enplaning/deplaning with rotor turning will or will not be accomplished.

Whenever the helicopter has landed to pick up passenger(s) or patient(s) and when practical, the pilot shall position the aircraft so that the tail rotor is away from the area that people are expected to approach the helicopter. For aircraft equipped with a rotor system that has a forward tilt, or that has a low clearance at the front; these aircraft shall be positioned so that all personnel movement will be to or from the 3 or 9 o’clock positions.

The Helicopter may be enplaned or deplaned with rotors turning provided:

- The rotor tip path plane is leveled.
- IV poles and other equipment shall be kept at head height or lower.
- The controls are secure.
The autopilot is off. (If autopilot is installed)

The force trim is on. (If force trim is installed)

Engine RPM as appropriate.

The pilot will use appropriate hand signals when directing ground personnel to approach the aircraft.

The following terminology shall be utilized:

- **Hot offload/offloading**: Indicates that the helicopter will be deplaned with engines running and rotors turning.
- **Hot on load/loading**: Indicates that the helicopter will be enplaned with engines running and rotor turning.
 - It is recommended that the pilot not assist in physically loading the patient.
- **Cold offload/offloading**: Indicates that the helicopter will be deplaned with engines shutdown and rotors completely stopped.
- **Cold on load/loading**: Indicates that the helicopter will be enplaned with engines shutdown and rotor completely stopped.

3.9 Minimum Altitude for VFR

[135.203]

At all times, with the exception of takeoffs and landings, Air Methods’ pilots will operate at an altitude allowing, if a power unit fails, an emergency landing without undue hazard to persons or property on the surface.

Air Methods’ helicopter pilots shall, when able, cruise at a minimum of 1,000 feet AGL - day or night.

3.10 Operations on or Near Frozen Waterways

If after evaluating possible landing zones, the pilot finds that an ice landing operation best meets the mission requirements, then Ice Landing Operations are authorized.

The following procedures will be utilized when conducting Ice Landing Operations:

- Ice thickness should be 16 inches minimum. This should be verified by a reliable source. (16 inches provides support for 32,000 lbs.)
- Plan the touchdown point at least 100 yards from the shore of the lake.
- Plan the touchdown point at least 100 yards measured perpendicularly from river, stream, or spring inlets/outlets.
- Maintaining 100% NR while on the ice will minimize the weight being supported by the landing gear. At 100% NR, it is also easier to respond rapidly to ice instability. If the pilot elects to load and off-load the helicopter at 100% NR, extra vigilance must be exercised, since the pilot will remain at the controls. A full crew briefing of the operation will be accomplished prior to loading or off-loading at 100% NR.
• Ice landings will not be attempted on rivers, streams, or flowages.

3.11 Scene and Hospital Communications

This procedure applies to operations to or from hospitals and scenes where no established communications procedure exists. Examples of established communications procedures are CTAF, Class B, C, and D airspace or hospitals that have established procedures for operations at their facility.

In the event that an area doesn’t have a designated communications frequency or the frequency is unknown, the pilot will announce in the blind his or her intentions on 123.025. If the frequency is known, the pilot will make the announcements on that frequency.

Pilots will announce their intentions for the following operations when no established communications procedure exists.

• Approach
• At five miles from landing
• At one mile from landing
• Upon landing
• Departure
• Upon liftoff
• At one mile from departure
• At five miles from departure

3.12 Scene Flight Operations

Pilots will not accept flights unless they are reasonably certain of completing the flight safely under VFR conditions (except bases approved for IFR operations) based on all weather information available to the pilot at the time of departure. If deteriorating weather is encountered enroute, comply with the procedures for “Deteriorating Weather Conditions Enroute “in Section 2 of this manual.

Prior to landing, if terrain, airspace, or environmental conditions allow, a 360° high reconnaissance will be flown at a hospital or scene. If terrain, airspace, or environmental conditions restrict the 360° high reconnaissance the pilot will use the appropriate means to ensure a safe landing area. An overhead approach out of the high reconnaissance can be performed.

If the aircraft is shutdown at a scene, the pilot shall visually check and confirm the location and height of all obstacles. When the aircraft is not shutdown, the pilot will still be responsible for verifying the location and height of all obstacles that could have an effect on the planned departure path.

The pilot will consider safety recommendations from the medical and ground personnel. Any other safety precautions deemed necessary should be followed.

During the initial portion of the departure, a power check will be made to determine if a 10% power margin below maximum takeoff power or HOGE power exist. If this margin does not exist, aircraft load (fuel, equipment, passengers, etc.) will be reduced to meet this requirement.
For all non-airport departures, the pilot shall maintain an appropriate departure profile that will ensure all obstacles are cleared by a minimum of 30 feet. After departure and clear of the obstacles the pilot will accelerate to and maintain best rate of climb speed.

A turn on course will not be made until the aircraft has climbed (at a minimum) to 300 feet AGL for day operations and 500 feet AGL for night operations unless rising terrain, obstacles, or local procedures dictate.

3.13 Special Visual Flight Rules (SVFR)

Pilots operating in controlled airspace designated to the surface may request an SVFR clearance for operations conducted beneath a ceiling reported as being less than 1000 feet.

Air Methods’ pilots will utilize the following minimum cloud and visibility requirements for SVFR operations:

- **DAY**: 700 foot ceiling and 2 miles visibility.
- **NIGHT**: 800 foot ceiling and 3 miles visibility.

NOTE: The weather minimums in section 3.14 apply to helicopter pilots transitioning as defined by that section.

3.14 VFR / IFR Operations – Flight Planning

14 CFR Part 135.609, 611, 613. 615. And A050

Air Methods’ pilots shall comply with the weather minimums and weather reporting requirements found in 135.609 or A050 for all operations in uncontrolled airspace including Part 91 flights. Air Methods’ pilots are authorized to use the lower night minimums found in 135.609 provided:

- The operation is permitted by Operations Specifications Paragraph A021
- The helicopter is operated using night vision goggles (HNVGO) or a Helicopter Terrain Awareness Warning System (HTAWS) that meets the Technical Standards Order (TSO) C194 or (TSO) C151b
- If operating HNVGO, Operations Specifications Paragraph A050 applies;
- If operating with HTAWS, the use of the inhibit function is not authorized;
- If operating below the NVIS/HTAWS minimums in 135.609 and both the NVIS and HTAWS systems fail or are rendered inoperative, the pilot will follow the procedures found in the GOM Section 2, “Deteriorating Weather Conditions Enroute”.
- IFR operations to or from destinations without an approved weather source are approved in accordance with the provisions stipulated in 14 CFR Part 135.611.
- IFR operations to or from destinations in uncontrolled airspace are approved in accordance with the provisions stipulated in 14 CFR Part 135.613 and H113.

VFR transitions from instrument approaches to adjacent helipads or landing areas are approved in accordance with 14 CFR Part 135.613.

Visual transitions from approved, Special Instrument Approach Procedures are approved using the weather minimums published on the procedure to be flown.
For the return leg from adjacent helipads or landing areas located in controlled airspace and within 3 miles of the facility providing the instrument approach, VFR transitions are approved using the VFR weather minimums of 14 CFR Part 135.613 (2) (i), and (ii).

For the return leg from adjacent helipads or landing areas located in uncontrolled airspace, VFR transitions are approved using the VFR weather minimums of 14 CFR Part 135.609

The return leg is authorized for purposes of refueling, filing IFR or returning to base if the base is located at the facility where the instrument procedure exists.

All IFR departures conducted using an approved Obstacle Departure Procedure with a visual segment will be conducted using the weather minimums specified on the chart for the procedure to be flown.

All IFR Departures conducted with a VFR to IFR transition segment will be conducted in accordance with 14 CFR Part 135.613 (b).

VFR Flight Planning requirements under 14 CFR Part 135.615 require pilots, prior to VFR flight, to determine the minimum safe altitudes along the planned route of flight.

Air Methods’ pilots will determine these altitudes from information derived from current aeronautical charts or a known obstruction by adding 300 feet during day operations and 500 feet during night operations to the highest obstruction or terrain elevation along the planned flight path. Pilots always have the choice to vertically clear obstructions or terrain features by at least 300 feet during day operations and 500 feet during night operations or to fly around the obstructions or terrain features maintaining a safe distance from them. Air Methods pilots will record the MSL elevation of the highest obstruction or terrain for each flight leg in the remarks section of the DFL. Pilots are not required to maintain this altitude for the entire leg. For example, if the terrain elevation along the flight leg remains constant but a 2,500 feet tower is along the flight path 10 miles ahead, the pilot may elect to fly 1,000 feet AGL for the entire leg and circumnavigate the tower by a safe distance.

Pilots must remember that VFR flying requires the pilot to have sufficient ceiling and visibility to see and avoid obstructions, terrain and other traffic, maintain cloud clearance required by the class of airspace, and to have visual surface reference during the day and visual surface light reference at night in accordance with FAR 135.207.

Pilots may deviate from the planned flight path as required by conditions or operational considerations. Pilots who deviate from original flight planning are still responsible for maintaining weather and obstruction/terrain clearances in accordance with 14 CFR Part 135.609 and 135.615. While enroute, Air Methods’ pilots who deviate from planned flight paths shall, when safe operations permit, determine the new minimum obstruction/terrain clearance altitudes from current aeronautical charts or current avionics’ databases approved for navigation. The overriding concern is to see and avoid obstructions, terrain and other aircraft. Air Methods’ pilots who plan changes while on the ground at an intermediate stop will follow the flight planning procedures outlined in this section.

3.14.1 MOC / ROC Weather Minimums

Previously there were no weather minimums established for airport or non-airport maintenance aircraft operations when forward flight is not intended. Do not perform aircraft operations when hazardous weather conditions such as high winds, lightning, hail, etc. exist. There shall be a minimum of 300’ / ½ mile visibility to conduct the intended aircraft operations. At the discretion of the pilot, aircraft may be moved from a dolly to the ground when weather is below 300’ / ½ mile visibility.
If operating on an airport in a movement area during hours of operation for an Airport Traffic Control Tower, prior approval before helicopter movement is required. If working in an uncontrolled environment, make calls in the blind on an appropriate frequency to alert other pilots of your intentions.

For the purposes of this bulletin, aircraft operations include but are not limited to hover taxiing the aircraft to reposition it for maintenance or hovering the helicopter for main rotor track and balance.

NOTE: The aircraft may not leave the ground with a discrepancy. Maintenance ground runs may be performed as necessary providing the aircraft does not leave the ground.

The ceiling and visibility requirement (1000’ / 3 miles) applies only when a Maintenance Check-Flight is required after completing maintenance ground run requirements and does not limit ground operations.

3.14.2 Weather Minimums Clarification Table

NOTE: This table is not all inclusive and serves to list examples only.

<table>
<thead>
<tr>
<th>Type of Operation</th>
<th>Examples</th>
<th>Minimums (Visibility/Ceiling)</th>
</tr>
</thead>
</table>
| Ground Operations| • Leak checks
• Ground track & balance | None / None |
| Hover Taxiing | • Reposition aircraft < 300’ from point of origin
• Hover track and balance | 300’ / ½ mile |
| Forward Flight | • Restricted Operational Check (ROC)
• Maintenance Operational Check (MOC)
• In-flight track & balance | 1000’ / 3 miles |

NOTE: Aircraft operations are prohibited when hazardous weather conditions such as high winds, lightning, hail, etc. exist.
4. **Flight Operations – Fixed Wing Specific**

4.1 **Airport Surface Operation**

For single-pilot operations, it is particularly important for the pilot’s full attention to remain on controlling the airplane during all movement on the airport surface. The checklists and associated flows for single-pilot airplanes will be designed so that none of them need be done while the aircraft is in motion. For some checklists, such as After Landing, for example, stopping the aircraft may at times offer only minimal total risk reduction. On these occasions, during extended taxi intervals on wide runways or taxiways, in good visibility, a pilot can accomplish some flow items while the aircraft is in motion. These items should be limited to those that can be accomplished with little or no looking inside the cockpit.

Two-pilot operations have additional options. Two-pilot crews can safely conduct flows and checks during aircraft surface movement using one of the following techniques, whenever a checklist or associated flow pattern requires the PF to look inside the cockpit to locate a particular switch or control:

- Ask the PNF to set the switches or controls required by the flow pattern.
- Transfer control of the aircraft to the PNF while the PF accomplishes a necessary flow.
- Request the PNF to delay accomplishment of the checklist until the aircraft has been moved to a position where one of the above tactics can be adopted.

4.2 **Cold Weather / Ground Icing**

[135.227]

The following procedures for operating airplanes in ground icing conditions will be followed, in order to meet the clean aircraft requirement of 135.227 (b) (1). These procedures are detailed in the Pilot Indoctrination training in AS Module 12.

4.2.1 **Cold Weather Preflight Inspections**

The normal preflight inspection should detect accumulation of frozen contaminants on fuselage, leading edges and upper and lower surfaces of wings and horizontal stabilizer, as well as on the leading edge and sides of the vertical stabilizer. Additional areas needing special attention include the following:

- For the King Air Series
 - Control surfaces and control hinge points
 - Flaps
 - Propeller blades and spinners
 - Engine inlet areas
 - Windshields and cockpit windows
 - Antennae
 - Pitot tubes and temperature probes
 - Fuel tanks, caps and vents
 - Cooling air intakes and exhausts
 - Landing gear assemblies and wheel wells
4.2.2 Removal of Frost, Ice, or Snow

No Air Methods pilot may takeoff an airplane that has frost, ice or snow adhering to any propeller, engine nacelle, wing, control or stabilizing surface, or any sensor for airspeed, altimeter, rate of climb or flight attitude instruments.

Frost, ice or snow may be removed from Air Methods airplanes using one of the following general techniques:

- The pilot/mechanic may have the airplane placed in a heated hangar at least long enough to melt the frozen contaminant. At this point the pilot may choose further storage to allow for evaporation of the liquid water on the airplane or use mechanical means (brooms, squeegees or cloths, among others) to remove the residual liquid.

- The pilot/mechanic may directly remove all frozen contaminant using mechanical means such as brooms, squeegees, ropes or large cloth strips, among others.

- The pilot/mechanic may use a hand sprayer to apply freezing point depressant (FPD) fluid to remove frost; the pilot may also use FPD applied in this manner to remove small amounts of residual snow or ice, following removal of most of the snow or ice using the heated hangar or mechanical methods.
 - Only SAE Type I (AMS 1424) fluid will be used. This fluid specification is approved by POH for both the PC12 and King Air series airplanes.
 - FPD fluids may be identified by color
 - Type I is generally dyed orange
 - Type II and Type III are generally dyed yellow
 - Type IV is generally dyed green
 - Sprayers containing fluid may be carried aboard the airplane if properly secured.
 - The applied fluid will have a concentration such that its freezing point is 10°C below OAT or lower (minimum temperature buffer of 10°C).
The fluid will be applied to all surfaces (including wings, fuselage, engine nacelles and empennage) where snow, ice or frost adheres.

- The pilot/mechanic may obtain an application of freezing point depressant (FPD) fluid from an FBO or other air carrier facility. Before application, the pilot/mechanic will determine the type of fluid to be used and its concentration. All applications of fluid will be done with engines shut down and propeller rotation stopped. Only SAE type fluid will be used:
 - For the PC12, the temperature of the applied fluid shall not exceed 70°C (160°F).
 - For the King Air series, the recommended maximum is 93°C (200°F).
 - FPD fluids may be identified by color:
 - Type I is generally dyed orange
 - Type II and Type III are generally dyed yellow
 - Type IV is generally dyed green

4.2.3 Fluid Deicing Procedure

General

When frozen contaminant is limited to residual ice on leading edges of wings and/or stabilizers, it may be removed by mechanical means or by application of FPD fluid to only the affected areas. In this case, if neither frost nor precipitation is occurring, the surfaces may be deiced in any order.

When using mechanical methods or applying FPD fluid for removal of snow, ice or frost, during conditions conducive to the formation of frost or while precipitation is occurring, the pilot will ensure that the representative surface that will be observed during the pre-takeoff contamination check is the first area of the airplane that is deiced. This will ensure that the remainder of the aircraft is at least equally free of contaminant. For the PC12, the representative surface is the left wing. For the King Air, the representative surface is the left wing and engine nacelle.

Deicing of the wings should begin at the leading edge wing tip, sweeping in the aft and inboard direction. If ice accumulation is present in the control surface cavities, it may be necessary to spray from the trailing edge forward.

Tail surfaces should be deiced in a similar manner to the wing. For the PC12, setting the stabilizer trim to a nose-down position will facilitate both deicing and subsequent inspection.

Propellers should be deiced in the static mode, making sure that all blades are equally clean.

The fuselage should be deiced from the top down. Any fluid remaining on cockpit window should be removed to maintain optimal visibility. Passenger and cargo doors may require deicing to ensure proper operation.

Deicing fluid should not be applied directly to static ports, pitot heads, AOA probes or cockpit windows, or air intakes.

Minimal amounts of deice fluid should be used to deice engine external areas, avoiding the engine air inlet(s). Fluid residue that reaches engine compressor blades can reduce engine performance or cause stalling or surging. It could also result in glycol vapors entering the cabin via the bleed air system.

Engine intake areas should be inspected for ice accumulated in flight immediately after shutdown. Any accumulation should be removed while the engine is still warm and before the installation of inlet plugs or covers. A light coating of deice fluid to the covers will help prevent them freezing to the nacelle.
Pilot/Mechanic Applied Deice Fluid

SAE Type I (AMS 1424) FPD is non-hazardous and may be carried aboard the aircraft in a hand sprayer, in a properly secured fashion.

Some Type I fluids are ethylene glycol compositions, whose minimum freeze point is achieved at a mixture of about two parts fluid and one part water. This is called the eutectic point of the mixture. Decreasing or increasing the fluid concentration from this point raises the freezing point of the mixture.

Other Type I fluids use propylene glycol, which does not behave in this fashion. Increasing the concentration of the fluid makes the freezing point continue to drop. However, the amount of decrease in freezing point of the mixture is very small after the ratio of two parts fluid to one part water is reached. In addition, concentrations of propylene-glycol-based fluids above 88% become very viscous at OAT of -10°C or less, and residual fluid could produce substantial lift reductions.

The recommended ratio for all Type I (AMS 1424) fluids, therefore is two parts fluid to one part water.

To ensure the proper mixture, the pilot/mechanic should load an empty sprayer with concentrated (neat) FPD fluid only, from a warm storage location, before departure. If practical, the container should be insulated to maintain its temperature. The sprayer should be loaded to no more than two-thirds of its capacity. The pilot/mechanic should then add heated water, in an amount equal to half the amount of fluid in the sprayer. At any time the sprayer needs refilled, the residual diluted fluid should be discarded and the above mixing process repeated.

4.2.4 Post Deicing Inspection

The pilot/mechanic will inspect the aircraft following deicing to ensure complete removal of contaminants:

- PC12
 - Wing leading edges, upper and lower surfaces, and aileron surfaces (including wing seals)
 - Horizontal stabilizer leading edges, upper and lower surfaces, and elevator surfaces (particularly at the balance horns).
 - Vertical stabilizer and rudder side surfaces
 - Flaps
 - Propeller
 - Engine, oil cooler and ECS intakes
 - Initial separator and screen
 - Fuselage
 - Antennae
 - Windshields and cockpit windows
 - Static ports, pitot tubes, AOA probes, and temperature probes
 - Fuel tanks and vents
 - Landing gear and wheel wells

- King Air Series
 - All external surfaces, for residual ice and/or snow
 - Antennae
 - Windshields and cockpit windows
 Control surface gaps and hinges
 - Control surfaces should be moved to verify unrestricted movement

 Static ports, pitot tubes, temperature probes

 Fuel tanks and vents

 Engine inlet areas

 Air inlets and exhausts for oil coolers, generator cooling or cabin air conditioning

 Landing gear
 - Landing gear doors
 - Wheel wells
 - Micro-switches

Pre-Takeoff Contamination Check

The pre-takeoff contamination check will be used to determine, within five minutes of liftoff, to ensure wings and control surfaces are free of frost, ice and snow. The pre-takeoff check for all King Air series and PC12 airplanes will be done as follows:

- As close as possible to the takeoff runway hold-short line, the pilot will verify that liftoff will be possible within five minutes, taking into account any likely ATC or traffic delays.
- The pilot/mechanic will then observe as much of the left wing (and engine nacelle and propeller spinner, in the case of King Airs) as possible and check for any visible accumulation of frost, snow or ice. If any is observed, the pilot will return to the ramp for further removal or to delay or cancel the flight.
- If a freezing point depressant (FPD) fluid has been applied, the pilot/mechanic will similarly check for accumulation of frozen hydrometeors, as well as note the appearance of any residual fluid. A shiny appearance indicates continued effectiveness of the FPD fluid. A dull appearance indicates loss of fluid effectiveness.
- If either accumulations of contaminant or loss of fluid effectiveness are observed, the pilot will return to the ramp for reapplication, to perform one of the other possible methods of removal listed above or to delay/cancel the flight.
- Holdover Time (HOT) Tables
- Holdover time tables are published by SAE and the FAA, and are used in ground icing programs approved under FAR 121.629(c), for the purpose of determining that the aircraft is free of frozen contaminants at the start of the takeoff roll. Air Methods’ program, as outlined in this section, uses the pre-takeoff contamination check to accomplish this same determination of a clean aircraft. Therefore, HOT tables are not used in a controlling fashion (either to determine “go” or “no go”) under Air Methods’ program. However, HOT tables can prove valuable as a reference for the purpose of planning the procedure for start and taxi under the temperature and precipitation conditions existing at the time of departure. Therefore, a current HOT table is available, as a planning aid only, on the intranet.

4.3 Trip Sheet / Load Manifest

[135.63]
A Fixed Wing Trip Sheet / Load Manifest form shall be carried in each airplane and will be prepared prior to each departure (a sample of this form is located in the appendix of this manual, the actual form is located on FlightDeck > Resources > Corp Forms). A trip includes all the legs flown for a single purpose, such as the transport of a patient (or multiple patients being billed as one transport), maintenance flight, ferry flight or training flight. Usually each trip will be assigned a unique trip or flight number. The following shall be recorded on the Trip Sheet.

- Flight Number, if applicable
- Date, aircraft N-number, and model designation
- PIC and SIC name (last name and first initial (e.g. Doe, J)
- PIC and SIC certificate numbers, followed by certificate type (e.g. 1234567 ATP)
- Number of passengers on each leg
- Airport identifier for origin and destination of each leg (e.g. KAPA, E91, 8TE5)
- Multiple landings, if applicable (such as might occur during training flights), shall be totaled in the remarks block for each leg

Four times shall be entered for each flight leg:

- Out (Time the airplane starts taxi for takeoff)
- Off (Time the airplane lifts off)
- On (Time the airplane touches down at destination airport)
- In (Time airplane comes to a stop on ramp at destination airport)

Hobbs meter readings may be recorded (in addition to the above, required, time entries) if approved in accordance with this manual. Times shall be noted in the local time of the base from which the trip originates. This applies to all legs of the trip, including those that begin or end in a different time zone.

The result of the pilot’s risk assessment shall be entered for each flight leg. For each leg, the following difference shall be computed and entered (in minutes) in the appropriately labeled spaces:

- Time In minus Time Out = Block Minutes
- Time On minus Time Off = Flight Minutes

When entering the leg in the Pilot 411 Pilot Log, the pilot shall enter the Off time (as defined above) in the Pilot Log space labeled “Start Time.” The pilot shall enter the On time (as defined above) in the Pilot Log space labeled “End Time.” The pilot shall enter the Block Minutes (as computed above) in the Pilot Log space labeled: “Block Time.”

When entering the leg in the Pilot 411 Pilot Log, the difference between Block Minutes and Flight Minutes, as computed above, will be entered in the Pilot Log space labeled: “Block Time.”

Takeoff weight and max weight will be entered for all legs. The only exception will be for maintenance, training, ferry, and reposition legs with only Air Methods employees on board, which are considered Part 91 flights.

For Part 91 legs, “Part 91” will be written in the weight and balance portion of the Trip Sheet. Additionally, the purpose of each Part 91 leg (training, maintenance, ferry, or reposition flights with Air Methods employees) will be entered in either the Remarks or Weight and Balance section of the Trip Sheet.
The CG entries apply only to multiengine aircraft. All blocks of this section will be filled out (i.e. Fwd Limit, Actual CG, Aft Limit, and Max Weight for the flight).

The only legs that will be operated under FAR Part 91 are those for maintenance, training, ferry and reposition with only Air Methods employees aboard. All other flights will be considered Part 135 and all applicable elements of weight and balance shall be recorded on the Trip Sheet, before takeoff.

NOTE: The PIC must still determine weight and balance information for each leg, to ensure compliance with limitations listed in the aircraft flight manual. Recording the results, however, is mandatory only for Part 135 legs.

PIC signature at the bottom of the Trip Sheet constitutes verification of aircraft airworthiness and is completed before engine start.

The Program Aviation Manager or their designee (usually the night shift duty PIC) will audit the Trip Sheets for each calendar day to ensure accuracy of the Pilot 411 DFL, before closing out the DFL on the Pilot 411 system.

The paper copy of the DFL will be carried aboard the fixed wing aircraft during flights and a completed copy will be kept on file at the base, in a consistent and commonly known location to expedite access by pilots and mechanics, for not less than 30 days. On the 3rd and 18th of each month, these DFLs will be scanned or converted to a PDF file and forwarded electronically to the Chief Pilot, using the appropriate 135forms email address and proper naming convention. These electronic copies will be kept at the main office for 30 days after the date they were created; they satisfy the requirement to keep a duplicate copy of the load manifest.

4.4 DFL Procedures and Trip Sheet for Wheeled Aircraft

A copy of each Trip Sheet will be taken aboard the aircraft during the flight and the completed form will be kept on file at the local Air Methods’ base for not less than 30 days. This, along with the closed out Pilot 411 DFL satisfies the requirement for keeping a duplicate copy of a load manifest. The Trip Sheet satisfies all the requirements of a load manifest if the weight and balance section is completed as instructed above.

When the Pilot 411 DFL has been closed out at the end of the calendar day, the person who closes it out shall print it out and file it, along with the day’s Trip Sheets, at the base in a consistent and commonly known location for access by pilots and mechanics. The day’s total time in service (along with starts, landings and other required data) will be taken from the printed Pilot 411 DFL and used to update the airplane maintenance log.

4.5 LAHSO (Land and Hold Short Operations)

Land and Hold Short Operations began as simultaneous operations on intersecting runways (SOIR) in 1968. It was a technique to increase airport capacity without compromising safety. Available runways were then, as they are now, the primary restriction to the capacity of the National Airspace System.

LAHSO is an extension of the SOIR program. It includes landing operations to hold short of intersecting taxiways and landing operations to hold short of designated points on the runway, in addition to SOIRs landings to hold short of intersections with other runways.

The FAA, in response to recommendations by the NTSB, has restricted air carrier operations (FAR 121 and 135) from accepting LAHASO clearances until those operators develop and receive FAA approval for specific LAHSO procedures and training programs.

4.5.1 Performance: Landing Distance Information
Using the performance data in the appropriate POH/AFM, select the temperature and airport elevation closest to, but greater than existing conditions at the landing airport. Use the zero wind (0 KTS) numbers when the reported wind yields a headwind component greater than or equal to zero.

The following procedures and the associated training module will enable pilots to quickly and accurately determine whether aircraft performance, existing weather, and runway conditions permit compliance with a particular LAHSO clearance. The procedures ensure that the LAHSO clearance may be carried out safely and with adequate performance margin.

4.5.2 Planning: Available Landing Distance (ALD) Measured Distance

- Determine from the runway information section of the airport listing in the Airport/Facilities Directory (AFD) whether the destination airport has a designated LAHSO runway operation. If it does, note the ALD for the runway most likely in use at the ETA and other possible runways.

- Landing distance will be the FAA-approved Aircraft Flight Manual (AFM) distance plus 1,000 feet for the configuration, environment, and the weight actually used for landing. In no cases shall LASHO be conducted to a runway distance less than specified for an aircraft type as identified in FAA Order 7110.118, Appendix 1. Use the following link to access the Order: http://www.faa.gov/documentLibrary/media/Order/ND/7110.118.pdf. A LAHSO clearance may be accepted if the ALD is greater than the resulting distance.

- LAHSO clearances may be accepted when wake turbulence considerations demand a long landing. Pilots will determine the available landing distance between the modified touchdown point and the hold short point.

4.5.3 Limitations

- LAHSO clearances may not be accepted when a tailwind exists.

- LAHSO clearances may be accepted only on dry runways.

- LAHSO clearances may not be accepted on wet or icy runways.

- LAHSO clearances may not be accepted to a runway that does not have visual or electronic vertical guidance.

- LAHSO clearances may not be accepted when Windshear has been reported within 20 minutes of the time a landing clearance is issued.

- LAHSO clearances may not be accepted when weather conditions dictate a final approach speed greater than VREF (for actual landing weight) plus 10 knots.

- LAHSO clearances may not be accepted when less than full flaps are to be used for landing.

- LAHSO clearances may only be accepted if coordinated with the respective airport to ensure the airport is compliant with LASHO operations. Pilots will ensure coordination by reviewing the AFD for LASHO information, monitoring ATIS for information and complying with ATC instructions.

Additional information is available in the Airman’s Information Manual and Operations Specifications Paragraph A027.
4.6 Loading and Unloading Patient / Passenger

The PIC will ensure that the engines are shut down and propellers stopped before allowing passengers/patients or medical personnel/crewmembers to enter or leave the airplane.

The pilot will participate in the loading process, and is, in fact, the one responsible for managing and directing the process. In single pilot operations, the pilot will determine whether to assist from inside the airplane or outside the airplane. Among other things, the pilot will consider his or her ability to direct and may take in to consideration any patient concerns that medical personnel may have. Although the patient’s medical concerns are important, the pilot’s first responsibility, during the loading process, is to ensure the safety of those involved and of the airplane. This is of paramount importance when determining position for loading.

4.7 Operations from Unimproved Airports

In general, pilots should choose the best airport for the mission at hand. There are many possible criteria for establishing the suitability of an airport. The first two, which are inviolate, are safety and legality. Neither medical necessity nor enhancement of efficiency can override these two considerations.

Some considerations for determining an airport’s suitability are its location relative to high terrain and other obstacles, runway size, runway surface, lighting, radio approach aids, and instrument approach procedures. Pilots must not allow proximity to the patient to outweigh the need to maintain safety and legality.

In remote areas, the only airport close enough to meet patient care requirements may be one without a paved runway. This is undesirable, since the condition of the surface is more difficult for the pilot to determine. Grass may be longer than it appears from traffic pattern altitude and it may conceal gullies, holes, or other irregularities that might damage landing gear or propellers. Gravel runways increase the possibility of FOD to turbine engines and of stones being thrown against or through aircraft skin. Airplane operations from unpaved landing areas are not prohibited, as long as they are not contrary to any other guidance in this Manual, Operations Specifications, or FARs. Such operations must also comply with all sections of the appropriate POH or AFM, with special attention to Limitations and Performance sections.

The following are areas of particular concern for operations from unpaved airports and practices that can mitigate the associated risk of these operations.

Pilots shall derive takeoff and landing performance figures used to determine unimproved airport suitability from the POH or AFM performance charts. To be considered suitable, an unimproved runway/landing area must be at least as long as the longer of the following two distances:

- 1.5 times the all-engine takeoff distance, ground roll only; or
- 1.5 times the normal flap-up, no reverse landing distance.

Braking action may be substantially degraded if the runway surface is other than paved and dry. This may occur with loose gravel or with grass wet with rain or even just early morning dew. POH or AFM data for accelerate-stop distance is often predicated on operation from a runway that is paved, level, and dry. Landing distance data assumes the same conditions, along with maximum braking. Crews considering an operation from an unimproved runway must examine carefully the associated conditions on performance charts and search for any published distance increase factors for degraded surface conditions.

An airport with no hard-surfaced runway is unlikely to be fenced. Combined with infrequency of use, this increases the likelihood of livestock or other large animals being on the landing area. When possible, pilots
should request that ambulance crews or other public safety personnel drive the runway/landing area, using lights and sirens to haze animals away from the runway environment.

A gravel runway that is firm during dry conditions may become soft after spring melting or following periods of precipitation. Pilots should expect the surface to be more variable than a paved one. Even when the runway/landing area has been constructed in a manner to reduce these effects, off-runway movement and parking areas may not be as well prepared and should be used with caution.

An unimproved airport is often without lighting. Crews need to be aware of the requirements of FAR 135.229. The runway or landing area must be marked with boundary or runway marker lights. Vehicle lights at the runway ends are not sufficient. Air Methods has no approval to use flare pots or lanterns for night illumination of runway/landing areas. After landing on an unlighted runway near the end of the day, a pilot may want to consider making a special arrangement with the medical personnel/crewmembers if they cannot return with the patient in time to depart before dark. This would probably involve repositioning to a lighted airport.

As with all flights, the pilots need to gather all information required to conduct the proposed operation safely. Each base can compile a list of contacts, including airport managers or other people who live near the airport and could provide preflight information on airport conditions. Law enforcement, fire, or EMS personnel may be instructed on how to make such observations. Pilots can ensure the quality of information obtained from non-aviation personnel by asking specific questions that elicit quantitative, rather than qualitative answers. In any case, pilots need to remember that information from non-aviation personnel may be distorted by the sources’ lack of familiarity with aviation concerns and by a high level of commitment to complete the mission. Pilots must, therefore, regard such information as general in nature, only, and verify it with more reliable sources whenever possible.

Entering the traffic pattern on an upwind leg abeam the runway will give more time to detect visually any surface problems. If necessary, this can be augmented with a low pass down or immediately adjacent to the runway/landing area. Pilots will comply with the minimum altitude requirement of 91.119 during this operation. The pilot will also employ the practices of the circling maneuver (as delineated in the Training Program); in order to ensure maintenance of safe altitude and airspeed while maneuvering clear of obstacles and traffic.

When contemplating an operation to an unimproved airport for which a base has no information, a pilot can conduct an advanced ground inspection of that airport. This can precede a PR or training mission.

In some cases, other management personnel may want to specify that each pilot must receive training at a particular unimproved airport before flying a mission there.

The Regional Aviation Manager or the Program Aviation Manager should consider seasonal inspections of anticipated unimproved airports. At a minimum, they should evaluate snow depth and mud conditions during winter months. In spring/summer months, they should initiate surveys for mud, ruts, potholes, and grass length.

In order to reduce the chance of FOD to turbine engines, propeller blade erosion or aircraft skin damage, crews should avoid static run-ups or systems checks on unpaved surfaces. For similar reasons, pilots should consider when runway length is sufficient. When available, and when aircraft performance allows it and if the POH or AFM permits it, pilots should deploy ice vanes or inertial separators for ground operations, takeoff and landing, in order to reduce further risk of FOD. Pilots should use propeller reversing sparingly.

Instructors will review soft field takeoff and landing procedures during training of pilots assigned to bases where use of unpaved runway/landing surfaces is likely.
4.8 Special Visual Flight Rules (SVFR)

Airplane pilots may conduct SVFR operations in conditions lower than those contained in FAR 91.155, subject to the following requirements and weather minimums:

- Pilots must conduct SVFR operations below 10,000 feet MSL.
- A pilot must receive an ATC clearance before conducting an SVFR operation.
 - Note, however, that the SVFR clearance is effective only within the airspace contained by the upward extension of the lateral boundaries of the controlled airspace designated to the surface for an airport. After an aircraft leaves the Class B, C, D, or E surface area, ATC provides no separation and the flight must observe the visibility and cloud requirements of 91.155.
 - Pilots must conduct flight under SVFR clear of clouds and with a minimum flight visibility of one statute mile. For takeoff and landing, reported ground visibility must be at least one statute mile.
- From sunset to sunrise, airplane operations under SVFR require the airplane and pilot to be equipped and qualified for flight under IFR.
5. Maintenance Operations

5.1 Aircraft Airworthiness Check

[135.25]
All aircraft will have an Airworthiness Check performed by a company mechanic in accordance with the applicable Approved Aircraft Inspection Program (AAIP) Airworthiness Check. If this section is not available within the AAIP, the mechanic will utilize the Air Methods Preflight/Airworthiness Checklist including the Supplemental Checks. If these are not available, the preflight section of the appropriate approved Pilot Operating Handbook (POH) or Approved Flight Manual (AFM or RFM) shall be used. This shall be performed on days the aircraft is in service, at a minimum of three times a week (defined as Sunday through Saturday) with the recommended schedule of Monday, Wednesday, and Friday. It is expected if a base mechanic is physically present, this check shall be performed by the mechanic each flight day. The mechanic shall also meet with the duty pilot to review the Aircraft Status Report to include any pen and ink changes to ensure awareness of items coming due. Pilots and mechanics must concur that all items coming due are noted on the Aircraft Status Report. This check shall include an entry made in the Aircraft Log Book. At a minimum, the log book entry shall include:

- (Date) (total time) “Performed Aircraft Airworthiness Check in accordance with (aircraft model) AAIP, AMC Preflight/Airworthiness Checklist or (applicable RFM), Aircraft Status Report reviewed, no defects or discrepancies noted. (signature)(cert. type & #)
- If maintenance discrepancies are identified during the Airworthiness Check, an appropriate log book entry shall be made by the individual who made the discovery and an appropriately rated mechanic contacted to perform corrective action.
- If discrepancies are identified during an Aircraft Status Report review, the aircraft shall immediately be removed from service until an appropriately rated mechanic resolves the discrepancy.

In the absence of a company mechanic, the pilots preflight shall be the equivalent of an aircraft airworthiness check. The pilot shall record the preflight / airworthiness check by signing the appropriate section of the Daily Flight Log. The pilot shall utilize the applicable AAIP (Airworthiness Check) or if this section is not available within the AAIP the pilot will utilize the Air Methods Preflight/Airworthiness Checklist including the Supplemental Checks. If these are not available, the preflight section of the appropriate approved Pilot Operating Handbook (POH) or Approved Flight Manual (AFM or RFM) shall be used. This check shall include a review of the Aircraft Status Report.

5.2 Deferred Discrepancy Log

When an item is deferred, an entry must be made in the “Discrepancy” (left hand) column of the Deferred Discrepancy Log (a sample of this form can be found in the Appendix of this manual, the actual form is located on FlightDeck > Resources > Corp Forms). The DDL entries must contain the discrepancy, System and Sequence Number, maintenance action taken (placards, inspections, disconnection from a system, etc.), the interval category, and the MEL revision number for the specific page the deferred item was found and whether any parts were ordered. When a deferred item is cleared, an entry must be made in the “Maintenance Action” (right hand) column of the Deferred Discrepancy Log opposite the associated “discrepancy”. The date cleared must also be listed.
No discrepancy may be deferred for more than that period specified in the applicable MEL without the specific approval of the Director of Maintenance or their designated representative, as specified in “Extension of MEL Deferral Time Limits” (in this section). Following this specific approval, the mechanic will make an additional entry in the “Corrective Action” (right hand column) of the deferred discrepancy log listing the date and the time of the approval, a reference to the original discrepancy, and the reason for extending the discrepancy beyond the MEL approved period. The original entry will then be rewritten in the first available discrepancy block with new dates reflecting the extension.

5.3 Maintenance and Mechanical Difficulties

Scheduled/routine maintenance and mechanical discrepancies are entered in the Aircraft Log Book by an appropriately rated pilot or mechanic who discovers the discrepancy prior to starting any Maintenance. However, if a discrepancy occurs, the mechanic assigned to that aircraft shall be notified as soon as practical [135.23 (f) & 135.65 (a) (b)].

5.4 Maintenance Operational Check

[91.417, 135.413]

No person may operate any aircraft that has undergone maintenance, preventative maintenance, rebuilding or alteration unless:

- It has been approved for return to service by a certified A&P Mechanic or an FAA Certified Repair Station holding the proper rating; and
- The maintenance record entry required by FAR Part 43.9 (content, form, and disposition of maintenance, preventative maintenance, rebuilding, and alteration record for inspections) has been made.
- No pilot may carry any person (other than required crew members) in an aircraft that has been maintained, rebuilt, or altered in a manner that may appreciably have changed its flight characteristics or substantially affected its operation in flight until a maintenance operational check flight is conducted only by designated pilots in command (who have current FAR Part 135.293 (a)(b) check in the make and model aircraft requiring the MOC or a pilot approved by the company) and logs the flight in the aircraft records.

Maintenance operational check flights will be accomplished any time it is required by the manufacturer or by regulation in accordance with the aircraft maintenance manual and the aircraft flight manual. Some manufactures have specific checks to follow including specific documents/checklists to complete. If a manufacturer has these requirements they must be followed for the specific work performed. The documents/checklists are to be completed and submitted with the logbook entry.

Maintenance operation check-flights will be conducted only in VFR conditions with the ceiling and visibility at or greater than 1000'/3 miles.

The aircraft does not have to be flown as required in the above paragraph if prior to flight, ground tests, inspections, or both show conclusively that the maintenance, preventative maintenance, rebuilding or alteration has not appreciably changed the flight characteristics or substantially affected the flight operation of the aircraft (ref. FAR Part 91.407 (C)).

5.4.1 MOC and ROC Differences

Maintenance Operational Checks and Restricted Operational Checks are different activities, as follows:
- Maintenance Operational Checks can be performed by any pilot current and qualified in the airframe.
- Restricted Operational Checks can only be performed by a pilot that is current and qualified in the airframe and has completed the training and checks for Functional Checks Requiring Written Authorization to be Performed. The training and checks can only be provided by a training captain or an aviation compliance evaluator that has been designated to conduct those checks by the chief pilot.
- MOCs may be conducted at night provided that the flight is conducted with night vision goggles or a conditional flight release. ROCs may not be conducted after local sunset or before local sunrise. Ground runs may be performed as long as there is no intention to fly.
- Any pilot that completes an evaluation on the ROCs will have it noted on an AMC Form 8410 either separately or in conjunction with another evaluation.

Any pilot that is not comfortable with conducting an MOC or an ROC should not conduct the flight and shall contact their regional management. Regional management will arrange another pilot to conduct the flight.

For procedures see the Maintenance Operational Checks – Post Maintenance section in this manual.

5.5 Mechanical Interruption Summary Report (MIS)

[135.417] Each certificate holder shall submit to the Administrator, before the end of the 10th day of the following month, a summary report of the previous month of each:

- Interruption of a flight, unscheduled change of aircraft en route, unscheduled stop or diversion from a route caused by known or suspected mechanical difficulties or malfunctions that are not required to be reported under 135.415.
- Number of propeller featherings in flight, listed by type of propeller and engine and aircraft on which it was installed. Propeller featherings for training, demonstration, or flight check purposes are not reported.

These reports are only applicable to multi-engine aircraft

In the event that one of the above situations occurs, the PIC will complete the appropriate portion of the Mechanical Interruption Summary Report as soon as practical after the event, not to exceed 12 hours (a sample of this form can be found in the Appendix of this manual, the actual form is located on FlightDeck > Resources > Corp Forms). When complete, the PIC will forward the report to the mechanic responding to the mechanical interruption. Once the corrective action has taken place, the mechanic shall complete the bottom portion of the MIS report and forward to the appropriate Regional Maintenance Manager. The Regional Maintenance Manager will ensure that the entire form is completed correctly, sign the “Reviewed By” box, and forward to the Director of Maintenance.

5.6 Minimum Equipment List (MEL)

When an aircraft contains an MEL, a certified A&P mechanic or FAA certified repair station holding the proper rating shall follow the procedures outlined and determine with the pilot whether this write-up, when coupled with any other open write-ups, renders the aircraft not airworthy. The pilot and mechanic, before further flight, shall ensure that any interface or interrelationship between inoperative systems or components
will not result in degradation in the level of safety and/or an undue increase in crew workload. The “Definitions” and “Preamble” of the MEL should be referred to as necessary (135.23 (i) & 135.179).

Federal Aviation Regulations require certain equipment to be operative for a given type of aircraft operation. However, the MEL provides for relief from these requirements under certain conditions.

All components/systems on an aircraft fall into three classes in regard to airworthiness requirements.

- **Class 1:** Units obviously required for aircraft to be airworthy such as tires, primary control systems, wings and units required by FARs original certification such as First Aid Kits, etc. These are generally not included in the Minimum Equipment List.

- **Class 2 (Non-essential furnishings, NEF):** Units obviously not required for aircraft to be airworthy such as cabin trim, curtains, pillows, etc. These are not included in the Minimum Equipment List but may be included in the Air Methods NEF Program.

- **Class 3:** Units which do not clearly fall into either of the above classes or for which some relief from the normal complement of equipment has been approved.

The Minimum Equipment List contains items in the third category for which some relief from the normal complement of equipment has been approved.

NOTE: The MEL contains those components and systems with which, by experience, the operator has found an aircraft (and proven to the FAA) can be operated safely without, under certain conditions.

The MEL does not include every piece of equipment or system in the aircraft. When no specific mention is made it is necessary that the equipment be operative unless it falls under class 2.

Should any doubt exist as to the interpretation of the MEL or the proper class of the item, assistance may be obtained from the Director of Maintenance or his/her designee.

NOTE: The term “Airport where repairs or replacements can be made” is defined as a Maintenance Station where Air Methods' maintenance personnel are normally on duty and where the necessary parts and required equipment are available. The Maintenance Support Representative, Regional Maintenance Director, or Director of Maintenance is authorized to deviate from this provision, subject to agreement with the Pilot-in-Command. The Director of Maintenance, Maintenance Support Representative, or designated representative is responsible to exert all efforts to correct such items at the first available opportunity.

5.6.1 Deferral Procedures for Class 2 Items (NEF)

- An appropriately rated A&P mechanic or an appropriately rated pilot who discovers a discrepancy shall make an entry in the airframe maintenance logbook documenting the discrepancy.

- Discrepancies that do not affect the safety or airworthiness of an aircraft (cosmetic discrepancies, cabin trim, curtains, pillows, floor coverings peeling, cigarette lighter inoperative, etc.) may be deferred. The discrepancy must not be a grounding or safety of flight item, an item required by TC or STC, or an item for which there are damage or other limitations listed in an appropriate maintenance manual or other approved data.

- The NEF Program contains a list of items that are approved for Class 2 deferral. These items may be deferred by following the "Releasing Aircraft with Inoperative Equipment" procedures. This list is located on the Air Methods Intranet, 135 Field Maintenance site.
• If the Item is not on the NEF list, an appropriately rated A&P mechanic shall contact the Director of Maintenance or their designee to request authorization to defer a specific Class 2 NEF item. If approved, the Director of Maintenance or their designee will advise the mechanic that the deferral is approved and will assign a date by which the discrepancy must be corrected. Once approved, the appropriately rated A&P mechanic will make the following or similarly worded entry in the airframe maintenance logbook deferring the discrepancy.

• Date / / ACTT __________ Deferral of (this item) does not affect safety or airworthiness of the aircraft. Deferral of this item is authorized by (Name) (Title), AIR METHODS CORPORATION. This discrepancy shall be corrected on or before _/__/_. (Name)(Certificate type and number)

• Class 2 NEF items will be recorded on the Deferred Discrepancy Log. Extensions may be granted at the discretion of the Director of Maintenance or their designated representative.

• When the last deferral is closed, discard it locally provided it has been sent and processed through Maintenance Support.

5.6.2 Releasing Aircraft with Inoperative Equipment

The Minimum Equipment List is designed to provide coverage for individual failures in non-related systems. In the event of multiple discrepancies, even though each in itself may be deferred, coordination with the pilot and the Director of Maintenance or Maintenance Support Representative will be discussed for effect on maintenance. Consideration of the interrelation of the discrepancies and good judgment must be exercised by Maintenance Personnel authorized to release the aircraft.

• Appropriate action must be taken to ensure that no secondary hazard can be introduced by an inoperative component. Such action may consist typically of removing the unit(s) involved, capping lines, disconnecting and securing electrical connections, plugs, circuit breakers, etc., to ensure complete isolation from the aircraft or associated systems as required.

• A careful review shall also be made to ensure that such action does not conflict with Emergency Flight Procedures.

• Should a discrepancy occur when the aircraft is away from the normal base of operations or Air Methods’ maintenance personnel are not physically present at the base, the Air Methods’ pilot, any certificated A&P mechanic, or FAA Repair Station holding the proper rating may defer items in accordance with the procedures in Air Methods’ General Operations Manual.

• Appropriate entries shall be made in the aircraft logbook and the Deferred Discrepancy Log. The aircraft must be appropriately placarded. Assistance in determining such action may be obtained from the Director of Maintenance, Maintenance Support Representative, or his/her designee. The Deferred Discrepancy Log shall be faxed to the Maintenance Support Representative within 24 hours of deferral. At a minimum, per 8900.1, Vol 1, Ch 4, Sec 7, Par 4-799 B (8) (b), provisions for recording the following items should be developed:

 ◦ An identification of the item of equipment involved
 ◦ A description of the nature of the malfunction
 ◦ An identification of the person making the entry
 ◦ The MEL item number for the equipment involved

• The pilot, any certificated A&P mechanic, or FAA Repair Station holding the proper rating will make the following or similarly worded entry in the airframe maintenance logbook deferring the discrepancy. Date / / ACTT __________(Item) INOP. Deferred in accordance with (aircraft type)
MEL, Category (A, B, C, D, or NEF) expiration date_/__/_. (Signature)(Certificate type and number).

- When the indicating portion of an aircraft system or component is malfunctioning, it may be necessary to perform appropriate troubleshooting procedures to determine that the fault exists in the indicating system and not in the aircraft system or component, in order to properly apply the requirements of this section.
- The pilot may request equipment requirements above the minimums provided under this policy application or as specified in the Minimum Equipment List whenever, in their judgment, such added equipment is essential to the safety of a particular flight under those conditions prevailing at the time. Whenever this is necessary, a notation should be made in the aircraft logbook indicating that this action was at the request of the pilot.

5.6.3 MEL Disagreements

Any disagreements with the application of the MEL shall be resolved as follows:

- The pilot's decision prevails.
- On a post analysis basis, parties may submit reports indicating disagreement to the Director of Maintenance and Director of Operations for policy discussions.

5.6.4 Corrective Action Requirements

Maintenance action must be taken to clear all MEL items at the first available opportunity. All MEL items are categorized and the maximum time between deferral and repair for each category is as follows:

- Category A: These items must be repaired within the time limit stated in the remarks column.
- Category B: Items in this category must be cleared within three (3) consecutive days (72 hours) not counting the day the item was discovered. For example, if an item is deferred on Monday, the item must be cleared by midnight on Thursday.
- Category C: Items in this category include all items which are not in categories A and B and those items which are not required by FAR to be operative at all times. Category C items must be cleared within ten (10) consecutive days (240 hours) not counting the day the item was discovered.
- Category D: Items in this category shall be repaired within one hundred and twenty (120) consecutive calendar days (2880 hours); excluding the day the item was discovered.

All MEL items are listed in the addendum to the MEL along with the assigned category and associated time restriction of deferral. The Deferred Discrepancy Log shall be faxed to the Maintenance Support Representative no later than 24 hours after the corrective action. When all corrective actions of a Deferred Discrepancy Log have been completed and sent to the maintenance support representative, the DDL may be discarded locally.

5.7 MEL Deferred Item Control

When an item is deferred, the A&P mechanic responsible for the deferral will notify the Maintenance Support Representative in Englewood, Colorado. This should be done by fax as soon as possible, but not later than 24 hours after the deferral.
The Regional Maintenance Director or their designee is responsible for coordinating with Technical Services, Maintenance and Flight Operations to clear MEL items within the specified time limit. This includes procuring the necessary parts, ensuring the availability of personnel and necessary equipment and scheduling the aircraft for the required maintenance.

5.7.1 Tracking MELs

The maintenance support representative is to maintain a system to track all MEL items and log all MEL item deferrals with the following pertinent information:

- Aircraft registration number, serial number, and model.
- Discrepancy “(Item) INOP”.
- MEL System and Sequence number.
- Category.
- Date deferred.
- Date through which the aircraft may be operated with the MEL item deferred. (Expiration date)
- Mechanic’s signature.
- An electronic copy of the DDL while open.

5.7.2 Extension of MEL Deferral Time Limits

Air Methods is authorized by Operations Specifications to approve a single, one-time deferral extension to category B and C items with subsequent notification to the FAA PI within 24 hours. If an additional extension is required after the single, one-time extension, it must be approved by the FAA CMT prior to the expiration of the current extension time period. This authorization is to be used in unusual circumstances where the deferral deadline cannot be met and is not to be abused or used indiscriminately to cover up poor maintenance practices, maintenance program shortcomings, or poor management. The following procedures are used for deferral extensions:

- The Maintenance Support Representative is to monitor the fleet MEL status on a daily basis during the normal work week. When it is determined that the deadline for an MEL deferral cannot be met, the mechanic will fax a completed MEL Deferral Extension form to the Maintenance Support Representative by noon (Mountain Time) of the working day before the deferral expires (A sample of this form can be found in the appendix of this manual – the actual form is located on FlightDeck > Resources > Corp Forms). The pertinent information regarding the MEL item is to be indicated on the form including the reason for the extension, relevant details regarding the circumstances necessitating the extension and extension time requested. Please follow the instructions below:

Section One: MEL Deferral Extension Information

- When it is determined that the deadline for an MEL deferral cannot be met, the mechanic will complete Section One.

Section Two: Acknowledgement Signatures

- The mechanic will complete the first half of Section Two: Acknowledgment of Maintenance Requirements and send to maintenance support representative (MSR).
The MSR will have the materials supervisor or other department head sign the second half of Section Two: Acknowledgment of Internal Delays

Section Three: Approval/Disapproval of Extension

- For single, one-time extensions, the MSR shall review the extension and either approve or disprove the extension.
- If an additional extension is required after the single, one-time extension, the MSR will review the extension but will not complete Section Three. The MSR will submit the 5213 to the FAA Principal Inspectors (PI) for approval prior to the expiration of the current extension time. The FAA PI will review and approve or disapprove the extension by completing Section Three and return to the MSR.
- The MSR will distribute the 5213 as appropriate.

Section Four: MEL Disposition (MSR Use Only)

- The MSR will disposition the form 5213 as appropriate.

- The Director of Maintenance, Maintenance Support Representative, or designee will have the Materials Supervisor or other department head as appropriate (or their designee) sign the form, when appropriate, to ensure the department responsible for the delay in maintenance action is fully aware of their part in the MEL deferral process.

- The Director of Maintenance, Maintenance Support Representative, or designee shall review the single, one-time MEL deferral extension documented on the MEL Deferral Extension form and based on the completeness of the form and date documented, either approve or disapprove the extension requested.

- If the request is denied, the Director of Maintenance, Maintenance Support Representative, or designee denying the extension is to confer with the Mechanic requesting the extension as to the reason for disapproval and, if justified, can revise and approve the extension request.

- The Maintenance Support Representative will update the MEL Control Log “Expiration Date”, “Extension Date”, and “Date MEL Removed” columns.

- The Maintenance Support Representative is to distribute the approved, single, one-time extension form to the maintenance personnel responsible for the deferral. The mechanic responsible for the deferral shall attach a copy of the approved MEL Deferral Extension to the Deferred Discrepancy Log.

- The Director of Maintenance or their designated representative is to notify one of the Principal Inspectors assigned to the Air Methods Certificate Management Team within 24 hours subsequent to the approval of the MEL deferral extension. This notification may be accomplished in one of the following ways:
 - Verbal notification by telephone to the PI, their assistant, assigned PI or supervisor of these personnel with an accompanied e-mail, telephonic facsimile (fax) or mailed approval of MEL Deferral Extension Form.
 - Personal delivery of the approved MEL Deferral Extension form, to one of the above listed personnel at the local FSDO.
 - If the assigned FAA-PI cannot be notified within 24 hours subsequent to the extension approval due to normal work week weekend, holiday, etc., the FAA-PI will be notified of the extension during the next normal business work day.
5.7.3 Procedure for Use of Minimum Equipment List

- Initiating an MEL Item

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Action Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance/Pilot</td>
<td>Determines from MEL that aircraft may be operated in revenue service with the unit/system inoperative and/or removed as applicable.</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Confers with PIC to ensure agreement in interpretation.</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Determines parts required. Places appropriate Parts Request.</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Performs appropriate (M) maintenance procedure as a requirement for flight as listed in the MEL.</td>
</tr>
<tr>
<td>Maintenance/Pilot</td>
<td>Makes proper log book entry. (Refer to applicable section of this General Operations Manual).</td>
</tr>
<tr>
<td>Maintenance/Pilot</td>
<td>Install “INOP” sticker on instrument panel or control.</td>
</tr>
<tr>
<td>Flight Crew</td>
<td>Performs (O) operations as a requirement for flight as listed in the MEL.</td>
</tr>
<tr>
<td>Maintenance/Pilot</td>
<td>Transmit a fax to (800-806-0151) or email to AMSDMELFAX@airmethods.com using the Deferred Discrepancy Log to the Field Maintenance Department that an MEL item was deferred.</td>
</tr>
<tr>
<td>Director of Maintenance or their designee</td>
<td>Review parts and corrective action required. Establish priority.</td>
</tr>
<tr>
<td>Maintenance Support Representative</td>
<td>Record deferral in MEL Control Log.</td>
</tr>
<tr>
<td>Regional Maintenance Director or their designees</td>
<td>Advise Technical Services of parts required for shipment to required base.</td>
</tr>
</tbody>
</table>

- Clearing an MEL

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Action Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Maintenance Director & Materials Supervisor</td>
<td>Issues item to appropriate base for corrective action.</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Corrects discrepancy restoring component, system or indicator to normal operation condition.</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Make appropriate entry in aircraft logbook.</td>
</tr>
</tbody>
</table>
Maintenance
Remove inoperative sticker from unit or control.

Maintenance
Transmit a fax or email message using the Deferred Discrepancy Log to the Maintenance Support Representative confirming that item is cleared.

Maintenance Support Representative
Complete “Date MEL Removed” column on the MEL Control Log. Completes the bottom of the MEL Deferral Extension form and files with Deferred Discrepancy Log as necessary.

<table>
<thead>
<tr>
<th>SYSTEM & SEQUENCE NUMBERS</th>
<th>ITEM</th>
<th>1. NUMBER INSTALLED</th>
<th>3. NUMBER REQUIRED FOR DISPATCH</th>
<th>4. REMARKS OR EXCEPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>27. FLIGHT CONTROLS</td>
<td>1.</td>
<td>C</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Replace “INOP” sticker in the cockpit adjacent to the instrument or on the light switch, control, etc.: when the aircraft is dispatched with the item inoperative. Reference the MEL and make notation in the logbook indicating system and sequence numbers for the inoperative unit. For example, the “force trim” is listed under System 27, Sequence.

5.8 Obtaining Maintenance away from Normal Base of Operations

[135.23]

It is Air Methods’ policy to have company mechanics perform all maintenance but reserve the right to allow maintenance to be performed by outside personnel when conditions or location make it impractical to be performed by company mechanics. A pilot in the field is instructed to first contact the Regional Maintenance Manager or Lead Mechanic who will make this decision and authorize outside repair. If the Regional Maintenance Manager or Lead Mechanic is not available, the pilot will contact the Regional Maintenance Director. If Regional Maintenance Director is not available, then the pilot will contact the Air Methods Director of Maintenance. In the event the Regional maintenance manager, Lead Mechanic, Regional Maintenance Director, or Director of Maintenance is not immediately available, a pilot is authorized to have necessary work performed by a certified A & P mechanic or properly rated FAA approved repair station that are monitored under an FAA approved drug and alcohol program. The pilot must verify that the mechanic or repair station is covered by a drug and alcohol program prior to work being initiated. The maintenance record entries shall be verified by the Regional maintenance manager, Lead Mechanic, Regional Maintenance Director, or Director of Maintenance before further flight.

The duty mechanic or a company A & P mechanic will inspect all “away from home maintenance” as soon as the aircraft returns to base to determine that such work is satisfactory and the necessary logbook entries are made.
5.9 Service Difficulty Reports

When any aircraft malfunctions as outlined below, the PIC shall immediately notify the appropriate on call mechanic and Regional maintenance manager. The Regional Maintenance Manager shall immediately notify the Regional Maintenance Director. The Regional Maintenance Director shall contact the Director of Maintenance, or in his absence shall contact the Director of Operations, so a Service Difficulty Report (a sample of this form can be found in the appendix of this manual, the actual form is located on FlightDeck > Resources > Corp Forms) can be submitted to the FAA offices in Oklahoma City within the guidelines per FAR 135.415 (within 24 hours of occurrence and within 96 hours to the collection point). The PIC will send a detailed report to the Director of Maintenance, or in his absence the Director of Operations, outlining the occurrence and circumstance of:

- Fires during flight and whether the related fire-warning system functioned properly.
- Fires during flight not protected by related fire-warning system.
- False fire-warning during flight.
- An exhaust system that causes damage during flight to the engine, adjacent structure, equipment, or components.
- An aircraft component that causes accumulation or circulation of smoke, vapor, or toxic or noxious fumes in the crew compartment or passenger cabin during flight.
- Engine shutdown during the flight because of flameout.
- Engine shutdown during flight when external damage to the engine or aircraft structure occurs.
- Engine shutdown during flight due to foreign object ingestion or icing.
- Shutdown of more than one engine during flight.
- A propeller feathering system malfunction or inability of the system to control over speed during flight.
- A fuel or fuel-dumping system that effects fuel flow or causes hazardous leakage during flight.
- An unwanted landing gear extension or retraction or opening or closing of landing gear doors during flight.
- Brake system components that result in loss of brake actuating force when the aircraft is in motion on the ground.
- Aircraft structure that requires major repair.
- Cracks, permanent deformation, or corrosion of aircraft structures, if more than the maximum acceptable to the manufacturer or the FAA.
- Aircraft components or systems that result in taking emergency actions during flight (except action to shut down an engine).

For the purpose of this section, “during flight” is defined as the period from the moment the aircraft leaves the surface of the earth on takeoff until it touches down on landing.

In addition to the reports required by the above items, the pilot or mechanic shall report to the Director of Operations, Chief Pilot, or Director of Maintenance any other failure, malfunction, or defect in an aircraft that
occurs or is detected at any time if, in their opinion, the failure, malfunction, or defect has endangered or may endanger the safe operation of the aircraft.

If Air Methods 135 field personnel discover a malfunction or aircraft structure that requires repair by a 145 Repair Station, the 135 field personnel shall file the 135.415 SDR per procedures above. If a 145 Repair Station discovers a malfunction or structure that requires repair while performing maintenance, the 145 personnel shall file the SDR requirements of 145.221 to the FAA and will inform the Air Methods 135 Certificate and forward a copy of the SDR to the Director of Maintenance. Redundant SDR’s shall not be filed for the same instance.
6. Other Procedures, Policies, and Instructions

6.1 Aircraft Ground Handling

With the exception of fixed base operator (FBO) personnel, only properly trained Air Methods’ pilots, mechanics, or medical personnel who are employees of Air Methods will operate tractors, tug-a-lugs, aircraft transporters or other devices designed to move aircraft. Medical personnel may reposition the equipment after aircraft movement is complete.

For helicopter operations using a tug-a-lug or other lifting device, an Air Methods’ pilot or mechanic will perform a walk around inspection of all four saddles to ensure that the saddles are correctly contacting the cross tubes (or jack/lifting points). The inspection will be completed before the aircraft is lifted clear of the ground. Ensure the tug-a-lug or lifting device is clear of the aircraft prior to moving from under the aircraft.

For airplanes or helicopters equipped with wheeled landing gear, the brakes will be set or the wheels chocked before disconnecting the towing device.

At locations that require close quarters maneuvering around other aircraft or hangar facilities, a “wing walker” shall be used. Use of a “wing walker” will help prevent “hangar rash” or more serious aircraft damage. Medical personnel may be used in this role.

Aircraft may not be towed/moved using ground handling wheels at weights above those stated in the appropriate aircraft flight manual. Medical personnel may assist when needed when moving aircraft using ground handling wheels, however a pilot or mechanic will be responsible for “steering” the aircraft.

Cloth, nylon, or similar straps will not be used in lieu of tow bars (or other approved devices) when towing aircraft.

6.2 Avionics Equipment Databases

Avionics equipment databases shall be kept current in aircraft operated under instrument flight rules (IFR). If a database is expired in an aircraft operated under IFR, alternate navigation equipment approved for IFR operations and appropriate for the flight must be installed. Aircraft operated under visual flight rules (VFR) may maintain current avionics databases, however they are not required by this manual to be current for VFR operations unless required by FAR or aircraft flight manual. See the Overwater / Extended Overwater Operations section in this manual.

6.3 Carriage of Narcotics and Other Prohibited Drugs and Substances

Air Methods, by the very nature of its business, will transport narcotic and other controlled drugs and substances. Those drugs and related substances carried aboard Air Methods’ aircraft will only be those controlled by federal and/or local state statutes and agencies.

6.4 Emergency Equipment

Fire extinguisher(s) shall be installed in accordance with applicable FARs.

Survival kit(s), appropriate for the season and area of operation, shall be carried. The contents of these kits shall be determined by the Senior Lead Pilot, Program Aviation Manager, or Regional Aviation Manager unless otherwise specified.
6.5 Oxygen for Medical Use

Oxygen dispensed for medical use will be provided by Air Methods or by an authorized EMS/hospital from an approved system.

Oxygen dispensing systems (liquid and gaseous) will be maintained in accordance with Air Methods’ FAA approved maintenance program.

Gaseous oxygen bottles will not be filled above the container’s rated pressure.

6.6 Security (Base and Airport)

[135.125]

It is the responsibility of the pilot-in-command to protect company aircraft from damage, weather and unauthorized entry. When weather dictates and it is practical, aircraft will be put inside a hangar.

Company employees will not discuss details of aircraft operations, identity of passengers, trip destinations, or any other confidential information regarding the business of the company or its passengers with persons who do not have a valid need to know. All information gained through performance of duties is considered confidential.

6.7 Smoking

No person shall smoke within fifty (50) feet of the exterior of any aircraft, nor at any time within the interior of any company aircraft.

6.8 Use of Alcoholic Beverages

[135.121]

The serving of alcoholic beverages is not permitted on Air Methods Aircraft. No person who appears to be intoxicated will be allowed to board an Air Methods aircraft.

6.9 Use of Drugs

[91.17]

Certain drugs in common use have a marked effect on the nervous system, which is temporarily detrimental to a crewmember’s ability. Crewmembers should consult their doctor concerning any questions about these drugs. Crewmembers are expected to inform the Chief Pilot when the possibility of drug side effects exists or when they sense that their physical or mental condition might affect their ability to perform crew duties.

Whether on or off company property, and whether on or off duty, the use, sale, distribution or transportation of illegal narcotics, hallucinogens, depressants, stimulants, marijuana, or other mind-altering drugs by company employees may result in immediate termination of employment.
6.10 Use of Intoxicants

[91.17]

The use of intoxicants, including beer and wine, by any company personnel while on duty, or in the case of flight crewmembers, within (8) hours prior to duty, is prohibited. No crewmember may report for duty while under the influence of alcohol.
7. Safety Program

7.1 Safety Policy

Air Methods is committed to the attainment of the highest level of safety in the accomplishment of our corporate mission. It is our goal to provide a safe and healthy working environment for all of our team members and, in doing so, to support state and federal laws regarding safety. Our intention in making this strong commitment is to eliminate injuries to our employees and accidental damage to equipment and/or property. It will be understood that team members of all levels of the company will be safety committee members.

The scope of the Air Methods' safety program includes all aspects of company practice including in flight, in the performance of maintenance, on the ramps, on the helipads, in our offices, in fire prevention, and in every environment in which we work.

Responsibility for implementing the safety program rests with the Air Methods safety director, program safety officers, regional safety directors, field safety representatives, base and aviation safety managers, and managers / supervisors at every level. That responsibility brings with it the obligation and authority to actively promote the safety program company-wide.

7.2 Program Elements

The following items comprise the core elements of the Air Methods' Safety Program. Programs will be added, deleted or changed to meet current organization and operational mission requirements.

- Air Methods’ SMS Policy Manual
- Management-leadership commitment
- Risk Management (Hazard identification, reporting, evaluation and control)
 - The primary means of reporting an aviation safety event is the AIDMOR, (Accident, Incident, Damage, Malfunction, and Operations Report).
- “Y or Z” work order costs
 - Costs shall include but are not limited to; labor hours, components (purchase, repairs or rentals), equipment rental, shipping, and relocation of aircraft.
- Base safety audits
- Accident and incident reporting
- Accident and incident investigation
- Safety communications and awareness
8. Operational Control Center Guidance

8.1 General

The Operational Control Center (OCC) is committed to safe, professional air medical transport. Our initiatives and programs are dedicated to enhance safety by monitoring significant safety of flight issues relating to hazards, weather conditions and airspace restrictions. The goal is to protect assets and increase safety by supporting pilots and Communication Centers therefore increasing the awareness of possible adverse weather or other in-flight hazards. In addition, the Operational Control Center serves as a 24/7 staffed element for Flight-monitoring and assistance as well as a coordination center for Air Methods during normal, night, and holiday hours.

8.2 Purpose

The Operational Control Center is an Agent for Air Methods Corporation assisting with Operational Supervision and Control. The OCC is primarily responsible for flight surveillance while providing Advisory/Alert information affecting Air Methods aircraft. Advisories/Alerts may include, but are not limited to, flying in the vicinity of marginal or deteriorating weather conditions, temporary flight restrictions (TFR), ground proximity or any other significant possibility that could become a hazard to flight. All alerts will be communicated to the pilot or the appropriate Communication Center responsible for Flight Following.

8.3 Operational Control Specialist Duties and Responsibilities

- Reports to the Aviation Compliance Manager.
- Interfaces with the Director of Operations and the Chief Pilot.
- Answers all incoming requests for service in a professional and courteous manner.
- Initiates Post Accident Incident Plan (PAIP) when necessary.
- Notifies Certificate Management of accidents, incidents, or other significant events.
- Responsible for a thorough knowledge of flight tracking programs.
- Responsible for monitoring all flight conditions that may affect Air Methods aircraft from take off to landing IAW FARs and the Air Methods Corporation General Operations Manual.
- Assists Communication Centers with Options for Enroute Adverse Weather Condition Options.
- Assumes flight following responsibilities for aircraft when a Communication Center is out of service.
- Ensures a thorough knowledge of the Air Methods Corporation General Operations Manual, Communications Specialist Guidance section.
- Completes the initial and recurrent Communications Specialist Training and Examination IAW Section 2 of the Air Methods Corporation General Operations Manual.
- Will complete the Operational Control Specialist training program. Elements of the training may be completed by attending the Pilot’s Basic Indoctrination training course.
- Monitors Flight Log for compliance.
- Ensures a thorough knowledge of FAR Part 91 and 135 regulations.
Ensures a thorough knowledge of the Air Methods Corporation General Operations Manual.

- Responsible for meeting operational goals, initiatives, and objectives.
- Analyzes aviation weather to determine marginal and hazardous conditions for flight.
- Understands and applies the Air Methods Risk Assessment Program and how Risk Assessment Values are determined.
- Organizes all Sources of Flight Information to determine and develop an operational control center flight advisory/alert.
- Rapidly disseminates Advisories/Alerts to the appropriate Pilot's or Communication Centers of known or forecasted severe weather conditions, TFRs, or any concerns pertaining to safety of flight.
- Assists Communication Centers with options for aircraft with enroute deteriorating weather conditions.
- Receives and records all information transmitted to the Operational Control Center.
- Ensures dissemination of transmitted information to responsible areas.
- Maintains 24/7 staffing of the Operational Control Center.
- Performs other duties as assigned.

8.4 Flight Surveillance

The Operational Control Specialist shall track the status of all in-flight aircraft operated by the Air Methods Corporation and monitor the Alert System for hazards.

8.5 Flight Following

The OCS shall follow the procedures outlined in Sections 2 and 11 of this manual when flight following for a communication center that is out of service. The Operational Control Center may provide flight following for pilots who are ferrying aircraft and have two-way communication with the Operational Control Center.

8.6 Hazard to Flight Alert

All Operational Control Center Alerts will be transmitted as rapidly as possible to the appropriate pilot or Communication Center. The Communication Center responsible for the enroute aircraft within the advisory area will be contacted with all pertinent information including, but not limited to:

- Source of Information (Adverse/Deteriorating Weather, Forecasted Adverse Weather, TFR, SIGMET, National Weather Service Warning, etc.)
- Type of Hazard (IFR Conditions, TS, GR, FU, TFR, etc.)
- Location and Limits of Affected Area.
- Effective Time and Duration of Hazard.
- Bearing, Distance, Location, Movement, Speed, etc. of Hazard in Relation to the Affected Aircraft.
- Remarks (Any Pertinent Information).
8.7 Post Accident / Incident Plan (PAIP)

The Operational Control Specialist will notify Certificate Management of a PAIP without delay. The OCS will have a thorough knowledge of the PAIP process in section 2 of this General Operations Manual. The OCS is the primary contact point for a PAIP. Programs must use the PAIP that was developed for their specific program. When requested, the OCC will provide assistance to any communications center dealing with an incident or emergency.

8.8 Preflight Risk Analysis Support

The Operational Control Center supports preflight risk mitigation for flights that reach a predetermined level of risk as outlined in the Air Methods Operations Risk Assessment Program.

8.9 Non Flying Alerts

As time permits the Operational Control Center will provide hazardous weather advisories to bases or areas of operation. The purpose is to provide advanced notice so that bases can activate their hazardous weather plans to protect their assets.

8.10 24 Hour Hotline

The Operational Control Center has a toll free number that can be used for emergency contact, reportable incidents or to reach any of the CFR Part 119 managers. Incidents include but are not limited to fuel spills, hazmat or potentially hazardous situations or after activation of a PAIP. The OCC phone number is available to all agencies that require a 24 hour contact number. Contacting the OCC satisfies notification of Air Methods for PAIP’s, accidents and incidents.

Toll Free (866) 676-3442

8.11 Requests for Service

The OCC will not handle requests for service. All requests for service will be relayed to the appropriate communications center.

8.12 General Operations Manual

9. Medical Crewmember Guidance

9.1 General Information

This section provides guidance for those medical personnel who have successfully completed the FAA approved Air Methods’ Crewmember Training Program. Crewmember training must be completed on an annual basis as outlined in the training program.

Those personnel who do not comply with the crewmember training requirements will be trained in accordance with the “Coordination Training – Pilot and Medical Personnel” in Section 2 of this manual. If a medical person has not completed crewmember training, they can only perform the tasks outlined in the coordination training in Section 2 of this manual.

Crewmember training is required for all medical personnel involved in helicopter NVG operations.

Guidance for the below listed Duties and Responsibilities can be found in the Air Methods’ Crewmember Training Program presentation.

9.2 Duties and Responsibilities

- Supervise patient during fueling procedures (hot-engine operating and cold-engine shutdown).
- Perform passenger/patient briefing.
- Assist the PIC during cabin emergencies (fire, medical equipment malfunction, etc.).
- Assist the PIC during emergency egress.
- Load and unload patient (hot-engine operating and cold-engine shutdown).
- Secure medical equipment/baggage in the cabin compartment.
- Assist with crowd control at landing areas, including acting as the tail rotor guard or briefing a ground emergency worker as to the tail rotor guard.
- Perform a walk-around of the aircraft before flight.
- Ensure that the EPU (External Power Unit) / APU (Auxiliary Power Unit) is disconnected after start.
- Ensure cabin exits in cabin compartment are secure.
- Assist the PIC during approach and landing.
- Perform medical associated communications on appropriate medical communications equipment.
- Assist PIC with charts, approach plates, checklists, coordinates, and other reference material as appropriate.
- Be able to perform an emergency aircraft engine shutdown in the event the PIC is incapacitated.
- Perform normal and emergency operation of medical equipment.
9.3 Aircraft Emergency Engine Shutdown

If a PIC becomes incapacitated in the event of an accident/incident, the Medical Crewmembers will be responsible for the emergency engine shutdown of the aircraft. This shall include the correct positioning of: engine controls, fuel system controls, and electrical equipment controls as appropriate to the aircraft being operated.

Detailed guidance for specific make and model will be given during the Crewmember Training presentation.

9.4 Aircraft Preflight Walk-Around

To assist the pilot in ensuring that all cowls, caps, and fasteners are secured before flight, Medical Crewmembers will perform a complete walk around of the aircraft prior to entering the aircraft for flight. It is vital that caution is taken to avoid the rear area of the aircraft when the aircraft is operating.

9.5 Approach and Departure Procedures

Medical Crewmembers shall assist the PIC during approach and departure to/from all landing zones.

During approach, they shall assist the PIC in determining the suitability of a landing zone (i.e. size, shape, surface, slope, surroundings, etc.) and bring any concerns to the attention of the PIC.

During departure, they shall assist the PIC in observing any obstructions that may have been overlooked during the approach phase.

9.6 Assisting Pilot during Emergencies

Reference Emergency Operations in Section 2 of this Manual for guidance information.

9.7 Assisting Pilot with Reference Materials

Medical Crewmembers shall assist the PIC with the handling of navigation charts, approach plates, checklists, coordinates, and other reference materials upon request.

Medical Crewmembers may be requested to find specific information such as: airport communication frequencies, minimum descent altitude, confirm an emergency procedure, confirm coordinates for a landing zone, etc.

Detailed information regarding the use of the above mentioned publications/reference materials will be given during the Crewmember Training presentation.

9.8 Auxiliary Power Unit (APU) Procedures

To assist the pilot with an auxiliary power unit (APU) after engine start, the following procedure will be utilized:

- Wait for a signal from the pilot before removing power from the aircraft.
- Turn off the APU/EPU as applicable.
- Remove the plug from the aircraft receptacle.
- Close and secure the APU/EPU door on the aircraft.
- Remove the APU/EPU cord from the takeoff area and secure.
Detailed guidance for specific make and model will be given during the Crewmember Training presentation.

9.9 Communications with First Responders and Medical Facilities

Medical Crewmembers shall be responsible for air to ground communications with first responders and medical facilities in regard to patient information. In regards to landing zone information (obstructions, coordinates, etc.), the PIC may delegate this to Medical Crewmembers.

9.10 Deplaning Aircraft After Landing / Before Takeoff

Reference Emergency Operations in Section 2 of this Manual for guidance information.

9.11 Emergency Evacuation Assistance

Reference Emergency Operations in Section 2 of this Manual for guidance information.

9.12 Fueling Procedures

Reference Fueling Procedures in Section 2 of this Manual.

9.13 Hazardous Materials

9.14 Helicopter Night Vision Goggles Operations (HNVGO)

Reference Helicopter Night Vision Goggle Operations in Section 3 of this manual for guidance information.

9.15 Landing Zone Safety and Crowd Control

Reference Landing Zone Safety in Section 3 of this Manual for guidance information.

9.16 Loading and Unloading Patient – Helicopter Operations

Reference Loading and Unloading Patients in Section 3 of this Manual for guidance information.

9.17 Loading and Unloading Patient – Fixed Wing Operations

Reference Section 4 of this Manual for guidance information.

9.18 Normal and Emergency Operations of Medical Equipment

Medical Crewmembers shall be responsible for the normal and emergency operation of all installed medical equipment (suction system, medical oxygen system, etc.).

Detailed guidance for specific equipment will be given during the Crewmember Training presentation.

9.19 Passenger Briefing

Reference Passenger Briefing in Section 2 of this Manual for guidance information.
9.20 Safety Program

Reference Section 7 of this Manual for guidance information.

9.21 Securing Doors on the Aircraft

Medical Crewmembers will assist the PIC in securing doors after entry into the aircraft, and ensure that they remain closed and secure during flight operations. Operations with doors open will not be performed unless under the direct supervision of the PIC. Detailed guidance for specific make and model will be given during the Crewmember Training presentation.

9.22 Securing of Cargo and Aircraft

Reference Section 2 of this Manual for guidance information.

9.23 Security of Aircraft Passengers

9.24 Smoking

Reference Section 6 of this Manual for guidance information.

9.25 Use of Drugs

Reference Section 6 of this Manual for guidance information.

9.26 Use of Intoxicants

Reference Section 6 of this Manual for guidance information.
10. Communications Specialist Guidance

10.1 General Information

The Communications Specialist section provides guidance for those who have successfully completed the FAA approved Air Methods' Communications Specialist Training Program and is part of first tier operational control. This training must be completed on an annual basis as outlined in the FAA approved Communications Specialist Training Program and referenced in Section 2 of this manual.

Those personnel who do not comply with the Communications Specialist training requirements will not be authorized to perform the duties and responsibilities listed below.

The Communications Specialist coordinates and maintains effective communications between requesting facilities/agencies, crewmembers, medical personnel, maintenance personnel, and receiving facilities/agencies, as appropriate, to ensure a safe, expeditious response for emergency and non-emergency assistance and/or transport.

Additional guidance for the below listed Duties and Responsibilities can be found in the Air Methods' Communications Specialist Training Program presentation.

10.2 Duties and Responsibilities

- Answers all incoming requests for service and information in a professional and courteous manner.
- Coordinates and monitors all rotor wing and fixed wing transports in response to customer requests.
- Tracks status of all aircraft to include out of service times, public relations missions, and maintenance related missions.
- Completes the Air Methods internet based Flight Log for all flights conducted by an Air Methods aircraft.
- Operates and monitors all radio equipment maintaining effective communications with all crewmembers as appropriate, including flight following and tracking according to policies/procedures/regulations.
- Initiates PAIP as outlined in this manual.
- Coordinates and maintains effective communications between requesting facilities/agencies, crewmembers, medical personnel, and receiving facilities/agencies, as appropriate, to ensure an expeditious response for emergency and non-emergency assistance and/or transport.
- Will inquire about whether or not an incoming request has been refused or rejected by another air ambulance operator and include this information in the flight request.
- Arranges for all necessary and/or requested ground transportation associated with a flight.
- Ensures effective communications with the customer relaying any information regarding transport delays or changes in itinerary as soon as possible.
- If aware of a practice PAIP drill, notifies the OCC.
- Performs other duties as assigned.
10.3 Aircraft Status

The Communications Specialist shall track the status of all aircraft to include out of service times, public relations missions, maintenance related missions, and training missions since this information will have an impact upon which aircraft receives a specific flight request. Tracking aircraft status involves effective communications between pilots, maintenance personnel, medical personnel/crewmembers, and the communications personnel.

10.4 Flight Following

Flight following shall follow the procedures outlined in Section 2 of this manual.

10.5 Ground Transportation

Ground transportation associated with any aircraft transport shall be coordinated through the Communications Specialist in a timely manner.

10.6 Hazard and Weather Alerts from Operational Control Center

Upon receiving a hazard or weather alert from the Operational Control Center, the alert will be relayed to the pilot without delay.

10.7 Post Accident / Incident Plan (PAIP)

The Communications Specialist shall initiate the PAIP as required by this manual. The PAIP shall be developed and maintained by the Air Methods Regional Aviation Director according to the guidance provided in Section 2 of this General Operations Manual. Overdue aircraft, accidents, incidents, damage to aircraft, unscheduled landings, in-flight weather and maintenance aborts, unplanned deviations from the original flight plan, or fuel associated issues related to reported fuel loads vs. estimated flight times shall be reported to the Operational Control Center at 866-676-3442 without delay. Issuing a PAIP from the Internet Based Flight Log satisfies the initial notification requirement. In addition, the following are examples of possible reasons to elevate concerns to the OCC:

- General safety concerns
- Unplanned fuel stops
- Weather concerns
- Maintenance issues
- Indicators of inadequate crew rest

10.8 Requests for Service

All requests for service (flight request) will be accepted and relayed on an emergent and prioritized basis. It will be the responsibility of the Communication Center to assign and notify the appropriate aircraft in a timely fashion. An “appropriate aircraft” is defined as the closest available aircraft to the location requesting the service and an aircraft that is properly equipped/qualified for that mission (IFR vs. VFR, fixed wing vs. rotor wing, equipment required, etc.).

If it is known that another flight service, or another Air Methods’ PIC, declined the flight for any reason, this information must be communicated to the PIC that is offered the flight request.
Upon initial contact all known information pertinent to the flight request shall be communicated to the PIC, including, but not limited to:

- Type of flight (inter-facility transfer, on-scene response, specialty team transport, etc.).
- Additional equipment requirements (balloon pump, isolette, neonate nitric gas, etc.).
- LZ information for on-scene responses.
- Frequencies for communicating with ground personnel for on-scene responses.
- Requesting facility/agency.
- Receiving facility/agency.
- Bearing and distance to the requesting facility/agency or other location.
- HAZMAT considerations as appropriate.
- Patient weight (if known).

It is the sole responsibility of the PIC to accept or decline a flight request that has been offered by a Communications Specialist. No attempts should be made by the Communications Specialist to question the pilot’s judgment in denying a flight request.

10.9 Transport Delays

When any aircraft transport is delayed or a change in flight plan is made for any reason (weather, maintenance, patient condition, etc.), the PIC shall notify the Communications Specialist, then the Communications Specialist shall notify all parties involved in the original flight request as soon as possible.

10.10 General Operations Manual

A current copy of the applicable sections of the Air Methods General Operations Manual can be referenced on the Air Methods Internet based Flight Log. To access, select the “Ops Manual” link at the top of the Flight Log site.
11. Appendix: Sample Forms and Documents

Sample forms and documents shown in this section are for reference only and may not be the most current version. The most current version of the actual corporate forms are located in the Corp Forms repository on FlightDeck.
11.1 MEL Deferral Extension – 5213

This is a sample form only. The actual form is located on FlightDeck > Resources > Corp Forms.

MEL Deferral Extension

Extension Request #:

<table>
<thead>
<tr>
<th>Section One: MEL Deferral Extension Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension Initiated By:</td>
</tr>
<tr>
<td>Aircraft #:</td>
</tr>
<tr>
<td>MEL Item #:</td>
</tr>
<tr>
<td>MEL Item Deferral good through Midnight of:</td>
</tr>
<tr>
<td>Extension Requested through Midnight of:</td>
</tr>
<tr>
<td>Status Check Performed:</td>
</tr>
<tr>
<td>Extension Requested Due To: (Check One Below):</td>
</tr>
<tr>
<td>Circumstances:</td>
</tr>
</tbody>
</table>

This Extension is for an additional deferral of _____ days.
This MEL item has been previously extended _____ times.
With this Extension, the total deferral of this MEL item will be _____ days.

Section Two: Acknowledgement Signatures

Acknowledgement of Maintenance Requirements for this Extension:

Maintenance Signature:

Title:

Date:

Acknowledgement of Internal Delays for this Extension:

Signature:

Title:

Date:

Section Three: Approval / Disapproval of Extension

The request for the above MEL item deferral extension has been reviewed, and based on the reasons and circumstances given, this request is:

- [] Approved
- [] Disapproved
- [] See Attached for Limitation

This MEL is extended through following date: _______

Signature:

Title:

Date:

Section Four: MEL Disposition (MSR Use Only)

- [] MEL Cleared – Complete following section:
- [] MEL Clearing Date: Form Number 5213
- [] Total Days Deferred: _____
- [] Total Time Deferred – Days: _____
- [] Signature: _______

- [] MEL Extended
- [] New Extension Number: _____

- [] This extension was not used.

Form Number: 5213
11.2 Daily Flight Log / Load Manifest – 5155

This is a sample form only. The actual form is located on FlightDeck > Resources > Corp Forms.
11.3 Record of Airmen Flight and Duty Time (Duty Time Summary Report)

This form is auto-generated out of the Pilot 411 application.
11.4 Deferred Discrepancy Log - 5157

This is a sample form only. The actual form is located on FlightDeck > Resources > Corp Forms.
11.5 Mechanical Interruption Summary - 5158

This is a sample form only. The actual form is located on the Flight Deck > Resources > [Corp Forms](#).

Mechanical Interruption Summary Report

14 CFR 135.417

<table>
<thead>
<tr>
<th>Section One: Aircraft Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AIRCRAFT REGISTRATION NUMBER:</td>
</tr>
<tr>
<td>2. AIRCRAFT SERIAL NUMBER:</td>
</tr>
<tr>
<td>3. DATE OF INTERRUPTION:</td>
</tr>
<tr>
<td>4. MAKE:</td>
</tr>
<tr>
<td>5. ENGINE(s):</td>
</tr>
<tr>
<td>6. PROPELLER(s):</td>
</tr>
<tr>
<td>MODEL:</td>
</tr>
<tr>
<td>#1 S/N:</td>
</tr>
<tr>
<td>#2 S/N:</td>
</tr>
<tr>
<td>HOURS:</td>
</tr>
<tr>
<td>HOURS:</td>
</tr>
<tr>
<td>CYCLES:</td>
</tr>
<tr>
<td>CYCLES:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section Two: Details of Interruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. TIME:</td>
</tr>
<tr>
<td>8. CONDITIONS: (Check one):</td>
</tr>
<tr>
<td>Day VFR ☐</td>
</tr>
<tr>
<td>9. NUMBER OF PROPS FEATHERED:</td>
</tr>
<tr>
<td>10. DESCRIPTION OF INTERRUPTION:</td>
</tr>
<tr>
<td>(Multiengine Aircraft Only) Describe the course of events leading to change of aircraft enroute, unscheduled stop, diversion from a route, or unscheduled engine change:</td>
</tr>
</tbody>
</table>

| PILOT IN COMMAND: NAME (PRINTED): |
| SIGNATURE: |
| CERTIFICATE No.: |
| DATE: |

<table>
<thead>
<tr>
<th>Section Three: Cause of Interruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. CAUSE OF INTERRUPTION: To be completed by Maintenance personnel. Describe the known or suspected cause of the interruption:</td>
</tr>
</tbody>
</table>

| MECHANIC NAME (PRINTED): |
| SIGNATURE: |
| CERTIFICATE No.: |
| DATE: |

| REVIEWED BY: |
| TITLE: |
| DATE: |

| SUBMITTED BY: |
| TITLE: |
| DATE: |

This form shall be completed and sent to the Regional Maintenance Director (RMD) and the Regional Maintenance Manager (RMM) whenever a mechanical interruption to a flight occurs. The RMD will forward this report to the Director of Maintenance by faxing to 303-505-0161 or email to amsdirection@airmethods.com. Completion and submittal of this form to the FAA Flight Standards District Office (Denver) by the 10th of each month complies with 14 CFR 135.417.
11.6 Instructions for IIMC Procedure Template

The Inadvertent Instrument Meteorological Conditions (IIMC) template is shown following these instructions for completing it:

- **Location/Date Block:**
 - Identification of the originating base location.
 - Date the procedure was drafted. This should be updated as appropriate based upon current flight information.

- **IIMC Radius Block:**
 - This value may be tailored to the requirements of the originating base.

- **Sectors:**
 - If two or more adjacent sectors will have the same information, those affected sector lines may be deleted and only one corresponding MSA/FREQ/Recovery ARPT block need be notated.

- **Approach Frequency Block:**
 - Four APP FREQ blocks are established for each of the four MSA sectors. The appropriate frequency for that sector should be entered for quick reference by the pilot and medical crewmember assisting the pilot.

- **MSA Block:**
 - The minimum safe altitude should be entered for each sector, as derived from the highest Maximum Elevation Figure (MEF) in the appropriate quadrangle, +1,000’ flat / +2,000’ mountainous terrain.

- **Recovery ARPT SIAP:**
 - A recovery airport for each sector should be entered by airport identifier for quick reference by the pilot and medical personnel/crewmember assisting the pilot. Depending on the area of operation, multiple approach airports may be listed.

- **ID Block:**
 - The ID for the originating base should be entered.
11.7 IIMC Form - 5159

This is a sample only – the actual form is located on FlightDeck > Resources > Corp Forms.

IIMC Procedure Template

- Attitude (Level)
- Heading (Turn only to avoid known obstacles)
- Power (Adjust to climb power)
- Airspeed (Adjust to climb airspeed)

Climb to the minimum safe altitude (MSA) to clear all obstacles in the area.

Make all turns no greater than standard rate.

Contact appropriate Approach Control Center and Declare an Emergency. Squawk 7700 when able.

Report location, altitude, heading, fuel status, and number of persons on board. State that you are Inadvertent IMC and request assistance.

The following procedures shall be utilized in following order of preference:

1. Radar vectors to VMC conditions.
2. Vectors to the closest appropriate approach.

Form Number 5159
11.8 Publication Verification Request Form – 5412

This is a sample form only. The actual form is located on FlightDeck > Resources > Corp Forms.

Publication Verification Form (Operations)

Section One: Instructions

After updating the respective manual, type the aircraft serial number in the block below. ONE VERIFICATION FORM PER MANUAL BEING REVISED MUST BE GENERATED. Verify your actions by typing your name and date in Section Four below. Revision Control will be accomplished as specified in the Air Methods Corporation Operations Manual, Page 3. The PAM/AAM will send the completed form(s) as an e-mail attachment to the appropriate Regional Aviation Director, who will forward them to the Chief Pilot at Pubverifications@airmethods.com.

Revision is required to be completed and this form returned by:

Section Two: Revision Information

<table>
<thead>
<tr>
<th>Date:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention:</td>
<td></td>
</tr>
<tr>
<td>Sent By:</td>
<td></td>
</tr>
<tr>
<td>Manual:</td>
<td></td>
</tr>
<tr>
<td>Revision:</td>
<td></td>
</tr>
<tr>
<td>Base/Location:</td>
<td></td>
</tr>
<tr>
<td>Aircraft Serial Number:</td>
<td></td>
</tr>
<tr>
<td>Aircraft Type:</td>
<td></td>
</tr>
<tr>
<td>Aircraft Location:</td>
<td></td>
</tr>
<tr>
<td>Description of Revision:</td>
<td></td>
</tr>
</tbody>
</table>

Section Three: Publication Revised

- [] Operations Specifications
- [] Operations Manual
- [] Training Program Manual
- [] Aircraft Flight Manual
- [] Other: Memos
- [] Other: Decal

Section Four: Verification of Receipt and Action Taken

I have received and have posted all contents received in the appropriate manual.

<table>
<thead>
<tr>
<th>Name:</th>
<th>Date:</th>
</tr>
</thead>
</table>

Form Number 5412
11.9 Fixed Wing Daily Flight Log / Trip Sheet – 5211

This is a sample form only. The actual form is located on FlightDeck > Resources > Corp Forms.
11.10 NVG Preoperational Checklist – Form 5415

This is a sample form only. The actual form is located on FlightDeck > Resources > Corp Forms.

Night Vision Goggles Pre-Operational Checklist

<table>
<thead>
<tr>
<th>Items to Check</th>
<th>Procedures</th>
<th>Not Usable if</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Operation Check</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Daily, if in use.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>180 day services</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grounding condition present</td>
<td></td>
</tr>
<tr>
<td>2. Low Profile Power Pack</td>
<td>Inspect the power pack for damage or missing components.</td>
<td>Power pack cracked.</td>
</tr>
<tr>
<td></td>
<td>Battery Compartment</td>
<td>Check for corrosion, damaged contact and spring tension caps damaged or broken.</td>
</tr>
<tr>
<td></td>
<td>Power Cable</td>
<td>Inspect cable for damage, connector for bent pins, and quick release for proper function, protective clips if any or broken.</td>
</tr>
<tr>
<td></td>
<td>Function Switch</td>
<td>Check the switch for operation (performed during the low battery indicator check).</td>
</tr>
<tr>
<td></td>
<td>Velcro Tape</td>
<td>Ensure the Velcro tape is free of lint and securely attached.</td>
</tr>
<tr>
<td>3. Helmet Visor Shield</td>
<td>Inspect the visor shield for cracks or mounting holes excessively worn.</td>
<td>Cracked.</td>
</tr>
<tr>
<td>4. Mount Assembly</td>
<td>Inspect to make sure it is securely attached to the visor shield or helmet, side of the mount not cracked, vertical adjustment operates, lock release button for proper operation and contacts for cleanliness, corrosion or wear.</td>
<td>Side cracked, vertical adjustment inoperative, release button inoperative or missing, contacts corroded or worn.</td>
</tr>
<tr>
<td>5. Power Cable or Power Connector at Mount</td>
<td>Check to make sure cable is secure, free of visible damage and female connector is free of debris.</td>
<td>Cable or connector damaged.</td>
</tr>
<tr>
<td>6. Binocular Assembly</td>
<td>Inspect dual contacts for dirt, corrosion or wear. If dirty clean with a pencil eraser or alcohol and cotton swab.</td>
<td>Contacts are worn, loose or missing.</td>
</tr>
<tr>
<td></td>
<td>Lens, Objective and Eyepiece</td>
<td>Inspect objective and eyepiece lenses for cleanliness, scratches, chips or cracks. Clean and dry lenses with clean water and lens paper.</td>
</tr>
<tr>
<td></td>
<td>Eyepiece Focus Assembly</td>
<td>Check eyepiece to ensure the whole assembly is not loose, that there is free movement through the full range of travel. Normally, the +2 mark on the eyepiece focus ring can turn counterclockwise past the reference dot. On the 25mm eyepiece, the -6 mark can turn clockwise past the reference dot. As long as the eyepiece focus ring stops at each extreme of travel, it is okay. If the eyepiece focus ring continues to turn and the whole lens turn, the eyepiece is loose. The reference dot on the indicator plate may be at any point on the eyepiece.</td>
</tr>
<tr>
<td></td>
<td>Objective Focus Assembly</td>
<td>Check objective assembly to ensure the whole assembly is not loose, that there is free movement through full range of travel.</td>
</tr>
</tbody>
</table>

Form Number 5415
Night Vision Goggles Pre-Operational Checklist

<table>
<thead>
<tr>
<th>Items to Check</th>
<th>Procedures</th>
<th>Not Usable if:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Operation Check</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **7. PAS (Pivot and Adjustment Shelf)** | Check for cracks, broken electrical circuits and that spring-loaded ball bearings are clean and operate properly. Check normal travel of fore and aft adjustment. Hold binocular at eye level, turn span knobs to move monocular to inside and outside extremes. | Crack, broken circuit or ball bearing inoperable.
A small amount of wobble is acceptable.
Caution:
Operate NVGs only under dark conditions.
Monocular wobbles excessively or binds. |
| **8. Monocular Housing** | Inspect exterior and purge ports for cracks or damage. | Crack, damage or purge valve missing. |
| **9. Mount** | Make sure the power switch is turned OFF. Hold the binocular with eyepieces facing you at approximately a 30° down angle. Slide the ball and plunger assembly into the channels of the mount until they lock in place. Ensure the fit is secure and snug. Press the lock release button and rotate the binocular assembly to the up and down positions. Make sure it engages properly. Check the vertical adjustment for proper operation. | Binocular not held securely.
Lock-release button is missing or inoperative.
Movement binds, does not adjust and stay where adjusted. |
| **10. Power Pack Function Switch** | Place the switch in either ON position and look for green glow in both eyepieces. Check the other ON position. | Green glow absent in one or both eyepieces, either switch positions. |
| **11. Viewed Image** | Check for flickering, flashing, bright spots, edge glow, shading, excessive fixed noise pattern (honeycomb). See Note | If fails inspection. |
| **12. Low Battery Indicator** | Attach the power pack to the mount. Install the batteries in the primary and alternate compartments, place switch in either to the ON position and open the battery compartment cap for that side. Pull the battery cartridge part way out to break the contact. The low battery indicator should come on or blink. Check the other battery. | Indicator will not come on. |
| **13. Binocular Assembly** | Replace the lens covers on all lenses; use the eye span knobs to adjust the eye span distance to allow the NVG to fit in the carrying case (less than the 60 index). Do not force the NVG into the case. | |
| **14. Power Pack** | Place the switch OFF position, remove the batteries and stow the power pack in the carrying case so the power cable faces up. Record any discrepancy in the maintenance log. | |
NVG Preoperational Checklist, continued

Night Vision Goggles Pre-Operational Checklist

NOTE: The Pre-Operational Checklist incorporates the checks for the ITT F4948, L3 (Grumman/Litton) M949 and Nvisys NVAG-6 Night Vision Goggles Operator’s Manuals. The checklist lists all items to be checked by the operator/user. Defects found during the Pre-Operational Check will be entered on the maintenance log.

There are two groups of “defects” that can be encountered, operational defects and cosmetic blemishes:

1. Operational defects are an immediate cause to reject the NVG, including:
 - shading
 - edge glow
 - flashing
 - flickering
 - intermittent operation

2. Cosmetic blemishes are not a cause for rejection unless they become severe enough to interfere with the ability to see, including:
 - bright spots
 - emission points
 - dark spots
 - fixed-noise pattern (honeycomb)
 - chicken wire
 - image disparity
 - image distortion
 - output brightness variation
 - veiling glare

Form Number 5415
11.11 Air Methods Bulletin Template

Title of the Bulletin

Number: Chronological, 2-digit number – year (i.e. 01-2012)
Issue Date: Date announced/posted
Issuer: Department head (or issuing Department)
Issued To: Group(s)/audience to receive the bulletin
Response Type: _____ Critical—requires an immediate response or action
 _____ Non-critical—does not require an immediate response
Archive Note: The content of this bulletin will be rolled into the appropriate manual at the next revision
 and this bulletin will be archived.
Location: Air Methods Bulletins are posted on FlightDeck > Resources > CorpPubs > Air Methods Bulletins.

General Information:

Body of the Bulletin

Further Information:

Any questions regarding this bulletin should be addressed to:

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Title</td>
</tr>
<tr>
<td>Phone</td>
<td>Phone</td>
</tr>
<tr>
<td>Email Address</td>
<td>Email Address</td>
</tr>
</tbody>
</table>
11.12 Sample Letter of Compliance

HARRIS FUELING, INC. DBA PEAK FLIGHT Support

Phone: 970-336-3010
600 Airport Rd. Greeley, Co 80631
Fax: 970-336-3011

Peak Flight Support
600 Airport Rd.
Greeley, CO 80631
970-336-3010

Re: Fuel Quality Compliance Letter
To: Air Methods Corporation

This letter confirms that the fuel quality control program of this FBO meets or exceeds accepted standards. We do so by adhering to fuel quality procedures in the reception and storage of our fuel, and by daily inspections as part of our normal routine. Our program conforms to Air Transport Association (ATA) specification 103 standard for jet fuel quality control at airports.

Peak Flight Support

Alex Sedlacek

10-11-2011
11.13 Service Difficulty Report - Form 5214

This is a sample form only. The actual form is located on FlightDeck > Resources > Corp Forms.

AMC Service Difficulty Report

Section 1: Submitter Information

<table>
<thead>
<tr>
<th>(a) Unique Control #</th>
<th>(b) Difficulty Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>QMLA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(c) Registration #</th>
<th>(d) Submitter Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>E – Carrier Part 136</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(e) Submitter Designator</th>
</tr>
</thead>
<tbody>
<tr>
<td>QMLA</td>
</tr>
</tbody>
</table>

Section 2: Codes

<table>
<thead>
<tr>
<th>(a) Operator Designator</th>
<th>(b) Operator Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>QMLA</td>
<td>Air Carrier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(c) JASCIATA Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>From List</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d) Stage of Operation</th>
<th>(e) How Discovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select from list</td>
<td>Select from list</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(f) Nature of Condition</th>
<th>(g) Precautionary Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select from list</td>
<td>Select from list</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(h) FAA Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(j) Flight Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(i) District Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
</tr>
</tbody>
</table>

Section 3: Major Equipment Identity

<table>
<thead>
<tr>
<th>(a) Aircraft</th>
<th>Manufacturer</th>
<th>Model</th>
<th>Serial Number</th>
<th>Total Time (hours)</th>
<th>Total Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select from list</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b) Engine</th>
<th>Manufacturer</th>
<th>Model</th>
<th>Serial Number</th>
<th>Total Time (hours)</th>
<th>Total Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select from list</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(c) Propeller</th>
<th>Manufacturer</th>
<th>Model</th>
<th>Serial Number</th>
<th>Total Time (hours)</th>
<th>Total Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select from list</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11.14 Air Methods Carrier Certificate

Air Carrier Certificate

This certifies that

Air Methods Corporation
7301 South Peoria Street
Englewood, Colorado 80112

has met the requirements of the Federal Aviation Act of 1958, as amended, and the rules, regulations, and standards prescribed thereunder for the issuance of this certificate and is hereby authorized to operate as an air carrier and conduct common carriage operations in accordance with said Act and the rules, regulations, and standards prescribed thereunder and the terms, conditions, and limitations contained in the approved operations specifications.

This certificate is not transferable and, unless sooner surrendered, suspended, or revoked, shall continue in effect indefinitely.

By Direction of the Administrator

Certificate number: QMLA253U

Effective Date: March 1, 1992

Issued at: NM03

John Lusk
Signature

Northwest Mountain Region PSDO 03
Region/Office

FAA Form 8436-18 (8-07)
12. Operations Specification

[119.7, 119.43, 119.49, 135.23]

NOTE: Currency of Operations Specifications is found in each table of contents for each applicable section.