Disclaimer of Warranty

The information contained herein is provided “AS IS” and Air Methods makes no other representations or warranties, either express or implied, by or with respect to anything in this document, and specifically disclaims any implied warranties of merchantability or fitness for a particular purpose.

Air Methods Corporation
5500 S. Quebec St., Suite 300
Greenwood Village, CO 80111

Document Owner: Director of Operations

© 2019 Air Methods Corporation. All rights reserved.

No part of this document may be reproduced or transmitted in any form by any means without the written permission of Air Methods Corporation.

Air Methods, Air Methods Corporation, AirCom, Blue Hawaiian Helicopters, Sundance Helicopters, United Rotorcraft, and all respective logos are registered trademarks of Air Methods Corporation. References to other companies and their products may use trademarks owned by the respective companies and are for reference purposes only.
Contents

Revision Record ... ix
Change Summary ... x
List of Effective Pages xi
List of Effective Pages xii

Introduction and General Information .. 1
 Purpose ... 2
 Distribution .. 2
 Revision Control ... 3
 Applicability .. 4
 Emergency Deviation ... 5
 Safety Management System 5
 Air Methods Bulletins 5
 Electronic Manuals and Recordkeeping Systems 6
 Air Methods Forms and Documents 7
Organization Chart ... 8
Management Personnel ... 8
 Director of Operations 9
 Director of Maintenance 10
 Chief Pilot ... 11
 Assistant Chief Pilot 12
 Director of Aviation Risk and Compliance 14
 Regional Aviation Director 15
 Regional Aviation Manager 18
 Check Pilot ... 20
 Program Aviation Manager 22
 Senior Lead Pilot ... 25
 Base Lead Pilot ... 28
 Pilot-in-Command (PIC) 31
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight Operations – General</td>
<td>34</td>
</tr>
<tr>
<td>Operational Control</td>
<td>34</td>
</tr>
<tr>
<td>Accident-Notification Requirements</td>
<td>36</td>
</tr>
<tr>
<td>Adverse- or Cold-Weather Operations</td>
<td>39</td>
</tr>
<tr>
<td>Aircraft Training and Currency</td>
<td>42</td>
</tr>
<tr>
<td>Airport Requirements and Diagrams</td>
<td>43</td>
</tr>
<tr>
<td>Carriage of Weapons</td>
<td>43</td>
</tr>
<tr>
<td>Cell Phones and Portable Electronic Devices (PED) Utilization</td>
<td>44</td>
</tr>
<tr>
<td>Conflict of Interest</td>
<td>45</td>
</tr>
<tr>
<td>Coordination Training – Pilots and Medical Personnel</td>
<td>45</td>
</tr>
<tr>
<td>Daily Flight Log (DFL)/Load Manifest - Helicopters</td>
<td>46</td>
</tr>
<tr>
<td>Daily Flight Log/Load Manifest - Specifying Header Information</td>
<td>46</td>
</tr>
<tr>
<td>Daily Flight Log/Load Manifest – Specifying Flight-Leg Details</td>
<td>48</td>
</tr>
<tr>
<td>Daily Flight Log/Load Manifest – Certifying and Processing Logs</td>
<td>50</td>
</tr>
<tr>
<td>Deplaning Aircraft After Landing or Enplaning Before Takeoff</td>
<td>51</td>
</tr>
<tr>
<td>Destination Hazards</td>
<td>51</td>
</tr>
<tr>
<td>Deteriorating Weather Conditions Enroute</td>
<td>51</td>
</tr>
<tr>
<td>Documents and Equipment Required in Aircraft</td>
<td>52</td>
</tr>
<tr>
<td>Do-Not-Fly Indicators</td>
<td>53</td>
</tr>
<tr>
<td>Dropping Objects</td>
<td>54</td>
</tr>
<tr>
<td>Electronic Flight Bag (EFB)</td>
<td>55</td>
</tr>
<tr>
<td>Introduction</td>
<td>55</td>
</tr>
<tr>
<td>EFB Operations</td>
<td>55</td>
</tr>
<tr>
<td>Normal Procedures</td>
<td>56</td>
</tr>
<tr>
<td>Non-Normal Procedures</td>
<td>56</td>
</tr>
<tr>
<td>Training</td>
<td>57</td>
</tr>
<tr>
<td>Safety</td>
<td>57</td>
</tr>
<tr>
<td>Discrepancy Reporting</td>
<td>57</td>
</tr>
<tr>
<td>EFB Operator Procedure Checklist – 5715</td>
<td>58</td>
</tr>
<tr>
<td>Emergency Notification</td>
<td>59</td>
</tr>
<tr>
<td>Emergency Operations</td>
<td>59</td>
</tr>
<tr>
<td>Emergency Procedures – Performing Practice</td>
<td>60</td>
</tr>
<tr>
<td>Flight Following</td>
<td>60</td>
</tr>
<tr>
<td>Flight-Time Limitations and Rest Requirements for Unscheduled One- and Two-Pilot Crews</td>
<td>62</td>
</tr>
<tr>
<td>Effect of Delays</td>
<td>64</td>
</tr>
<tr>
<td>Fueling</td>
<td>65</td>
</tr>
<tr>
<td>Safety Precautions for All Refueling</td>
<td>65</td>
</tr>
<tr>
<td>Safety Precautions for Cold Refueling with Patient Aboard</td>
<td>67</td>
</tr>
<tr>
<td>Rapid Refueling with Rotors Turning</td>
<td>68</td>
</tr>
<tr>
<td>Rapid Refueling with Rotors Turning – without Medical Personnel or Passengers Aboard</td>
<td>68</td>
</tr>
<tr>
<td>Rapid Refueling with Rotors Turning – with Medical Personnel Aboard</td>
<td>68</td>
</tr>
<tr>
<td>Rapid Refueling with Rotors Turning – with Medical Personnel and Patient Aboard</td>
<td>69</td>
</tr>
<tr>
<td>Fuel Sumping – All Aircraft</td>
<td>70</td>
</tr>
<tr>
<td>Hazards Map – Local Area</td>
<td>70</td>
</tr>
<tr>
<td>Instrument Flight Rules</td>
<td>70</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>IFR Operations at Locations without Weather Reporting</td>
<td>71</td>
</tr>
<tr>
<td>Flight Monitoring by the Operational Control Center</td>
<td>72</td>
</tr>
<tr>
<td>IFR Alternate Requirements and Fuel Requirements</td>
<td>72</td>
</tr>
<tr>
<td>IFR and Over-the-Top Limitations</td>
<td>73</td>
</tr>
<tr>
<td>IFR Departs</td>
<td>73</td>
</tr>
<tr>
<td>IFR Destination Requirements</td>
<td>74</td>
</tr>
<tr>
<td>IFR Destination Requirements for Eligible On-Demand Operations</td>
<td>76</td>
</tr>
<tr>
<td>IFR Enroute Requirements</td>
<td>77</td>
</tr>
<tr>
<td>IFR Limitations</td>
<td>78</td>
</tr>
<tr>
<td>Inadvertent Instrument Meteorological Conditions (IIMC) Recovery</td>
<td>78</td>
</tr>
<tr>
<td>International Operations</td>
<td>79</td>
</tr>
<tr>
<td>Maintenance Inspection After Occurrence or Incident</td>
<td>79</td>
</tr>
<tr>
<td>Maintenance Operational Check – Post-Maintenance</td>
<td>80</td>
</tr>
<tr>
<td>Malfunction or Failure of Required Equipment</td>
<td>81</td>
</tr>
<tr>
<td>Medical Oxygen Tanks – Filling and Changing</td>
<td>81</td>
</tr>
<tr>
<td>Operating Near Other Aircraft</td>
<td>81</td>
</tr>
<tr>
<td>Overdue or Missing Aircraft</td>
<td>82</td>
</tr>
<tr>
<td>Overwater and Extended Overwater Operations</td>
<td>84</td>
</tr>
<tr>
<td>Passenger and Medical Crewmember Briefing</td>
<td>85</td>
</tr>
<tr>
<td>Passenger Briefing</td>
<td>85</td>
</tr>
<tr>
<td>Required Medical Crewmember Briefing and Training</td>
<td>86</td>
</tr>
<tr>
<td>Passenger Occupancy of a Pilot Seat and Manipulation of Flight Controls</td>
<td>87</td>
</tr>
<tr>
<td>Personnel Qualifications</td>
<td>88</td>
</tr>
<tr>
<td>Post-Accident Incident Plan (PAIP)</td>
<td>88</td>
</tr>
<tr>
<td>Pilot’s Maintenance and Servicing Procedures</td>
<td>90</td>
</tr>
<tr>
<td>Pre-flight Preparation</td>
<td>90</td>
</tr>
<tr>
<td>Pre-flight Risk Analysis</td>
<td>92</td>
</tr>
<tr>
<td>Pre-start/Pre-takeoff Confirmation Check</td>
<td>93</td>
</tr>
<tr>
<td>Safety Belts, Child Restraints, and Carry-On Baggage</td>
<td>94</td>
</tr>
<tr>
<td>Search-Assistance Flight Limitations</td>
<td>95</td>
</tr>
<tr>
<td>Securing Cargo</td>
<td>97</td>
</tr>
<tr>
<td>Securing Aircraft after Shutdown</td>
<td>97</td>
</tr>
<tr>
<td>Parking Brakes and Chocks – Wheeled Aircraft</td>
<td>97</td>
</tr>
<tr>
<td>Propeller Ties – Single-Engine Airplanes</td>
<td>98</td>
</tr>
<tr>
<td>Propeller Ties – Multi-engine Airplanes</td>
<td>98</td>
</tr>
<tr>
<td>Engine Exhaust Covers – Airplanes with PT6 Series or Similar Engines</td>
<td>99</td>
</tr>
<tr>
<td>Engine Inlet Covers – All Airplanes</td>
<td>99</td>
</tr>
<tr>
<td>Shift-Change and Post-Mission Briefings</td>
<td>100</td>
</tr>
<tr>
<td>Stabilized Approach Concept</td>
<td>100</td>
</tr>
<tr>
<td>Sterile Cockpit</td>
<td>101</td>
</tr>
<tr>
<td>Temporary Flight Restrictions (TFRs)</td>
<td>102</td>
</tr>
<tr>
<td>VOR Equipment Checks</td>
<td>103</td>
</tr>
<tr>
<td>Weather Sources and Providers Approved for Aircraft Flight Planning</td>
<td>104</td>
</tr>
<tr>
<td>Weight-and-Balance Control</td>
<td>105</td>
</tr>
<tr>
<td>Determining Aircraft Operational Empty Weight (OEW)</td>
<td>105</td>
</tr>
</tbody>
</table>
Special Visual Flight Rules (SVFR) ... 140

Maintenance Operations ... 141
 Aircraft Airworthiness Check ... 141
 Maintenance and Mechanical Difficulties 142
 Maintenance Operational Check
 MOC and ROC Differences .. 144
 Mechanical Interruption Summary Report (MIS) 144
 Minimum Equipment List (MEL)
 Releasing Aircraft with Inoperative Equipment 146
 Deferred Discrepancy Log and Logbook Entries 147
 Deferral Procedures for Class 2 Items (NEF) 149
 MEL Disagreements .. 150
 Corrective-Action Requirements .. 150
 MEL Deferred Item Control
 Tracking MEL Deferrals ... 151
 Extension of MEL Deferral Time Limits 152
 Procedures for Use of Minimum Equipment List
 Initiating an MEL Item ... 155
 Clearing an MEL ... 156
 Obtaining Maintenance Away from Normal Base of Operations 157
 Service Difficulty Reports ... 158
 SDR Procedure ... 159
 Submitting Supplemental Information ... 159
 Submission to the FAA ... 160

Other Procedures, Policies, and Instructions 161
 Aircraft Ground Handling ... 161
 Avionics Equipment Databases ... 162
 Carriage of Narcotics and Other Prohibited Drugs and Substances.... 162
 Emergency Equipment ... 162
 Oxygen for Medical Use ... 162
 Security – Base and Airport .. 163
 Smoking ... 163
 Use of Alcoholic Beverages .. 163
 Use of Drugs ... 163
 Use of Intoxicants .. 164
 Guidance on Exposure Control and Aircraft Cleaning
 Protection and Control of Infectious Conditions 164
 Appropriate Measures .. 164
 Personal Protective Equipment Required when Cleaning Aircraft . 165
 Cleaning Interval ... 166
 Adherence to Exposure Control Plan ... 166

Safety Program ... 167
 Safety Policy .. 167
 Program Elements .. 167
Contents

Operational Control Center Guidance 169
- General ... 169
- Purpose ... 169
- Operational Control Specialist (OCS) Duties and Responsibilities .. 169
- Flight Monitoring ... 170
- Hazard-to-Flight Alert .. 171
- Post-Accident/Incident Plan (PAIP) 171
- Pre-Flight Risk Analysis Support 172
- Non-Flying Alerts .. 172
- 24-Hour Hotline ... 172
- Requests for Service .. 173
- General Operations Manual ... 173
- Shift Briefings ... 173
- Training and Testing ... 174

Medical Crewmember Guidance ... 175
- General Information ... 175
- Duties and Responsibilities ... 175
- Aircraft Emergency Engine Shutdown 176
- Aircraft Pre-flight Walk-Around 176
- Approach and Departure Procedures 177
- Assisting Pilot during Emergencies 177
- Assisting Pilot with Reference Materials 177
- Auxiliary Power Unit (APU) Procedures 178
- Communications with First Responders and Medical Facilities ... 178
- Deplaning Aircraft After Landing or Enplanement before Takeoff .. 178
- Emergency Evacuation Assistance 179
- Fueling Procedures .. 179
- Hazardous Materials ... 179
- Helicopter Night Vision Goggles Operations (HNVGO) .. 179
- Landing-Zone Safety and Crowd Control 179
- Loading and Unloading Patient – Helicopter Operations 179
- Loading and Unloading Patient – Fixed-Wing Operations 180
- Normal and Emergency Operations of Medical Equipment 180
- Passenger Briefing ... 180
- Safety Program .. 180
- Securing Doors on the Aircraft 180
- Securing Cargo and Aircraft ... 181
- Smoking ... 181
- Use of Drugs ... 181
- Use of Intoxicants ... 181

Communications Specialist Guidance 182
- General Information ... 182
- Duties and Responsibilities ... 182
- Flight Following .. 183
Contents

Hazard and Weather Alerts from Operational Control Center .. 183
Post-Accident/Incident Plan (PAIP) .. 184
Requests for Service .. 184
Transport Delays ... 185
General Operations Manual ... 185

Appendix A: Sample Forms and Documents 187
 Air Methods Part 135 Air Carrier Certificate ... 188
 Air Methods Part 133 Operating Certificate .. 189
 Air Methods Bulletin Template ... 190
 Airplane Trip Sheet – FO-5211 ... 191
 AMC Service Difficulty Report – FO-5214 (Page 1 of 4) ... 192
 AMC Service Difficulty Report – FO-5214 (Page 2 of 4) ... 193
 AMC Service Difficulty Report – FO-5214 (Page 3 of 4) ... 194
 AMC Service Difficulty Report – FO-5214 (Page 4 of 4) ... 195
 Daily Flight Log / Load Manifest – FO-5155 ... 196
 Deferred Discrepancy Log – FO-5157 .. 197
 Do Not Fly – Logbook and/or iPad Removed ... 198
 EFB Discrepancy Form – 5713 ... 199
 IIMC Procedure Template – 5159 .. 200
 Mechanical Interruption Summary Report – FO-5158 .. 201
 MEL Deferral Extension – FO-5213 .. 202
 NVG Pre-Operational Checklist – FO-5415 (Page 1 of 3) .. 203
 NVG Pre-Operational Checklist – FO-5415 (Page 2 of 3) .. 204
 NVG Pre-Operational Checklist – FO-5415 (Page 3 of 3) .. 205
 Operations Publication Verification Form – FO-5412 .. 206
 Pre-start/Pre-takeoff Confirmation Check ... 207
 Record of Airman Flight and Duty Time .. 208

Glossary ... 209
Revision Record

<table>
<thead>
<tr>
<th>Revision No.</th>
<th>Revision Date</th>
<th>Pages Affected</th>
<th>Revised By</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>04/12/19</td>
<td>All</td>
<td>Jason Quisling</td>
</tr>
</tbody>
</table>
A change bar is not required for removed material or complete manual revision/rewrite. Specific changes may be indicated by change bars.

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Release Date</th>
<th>Change Summary</th>
<th>Requester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-11</td>
<td></td>
<td>Change summaries from previous revisions have been archived and available upon request through Corporate Publications.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>04/12/19</td>
<td>Manual conversion from Word to Adobe FrameMaker Complete manual revision</td>
<td>Director of operations</td>
</tr>
<tr>
<td>Page</td>
<td>Date</td>
<td>Rev No.</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>i</td>
<td>04/12/19</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>ii</td>
<td>04/12/19</td>
<td>12</td>
<td>31</td>
</tr>
<tr>
<td>iii</td>
<td>04/12/19</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>iv</td>
<td>04/12/19</td>
<td>12</td>
<td>33</td>
</tr>
<tr>
<td>v</td>
<td>04/12/19</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>vi</td>
<td>04/12/19</td>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td>vii</td>
<td>04/12/19</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>viii</td>
<td>04/12/19</td>
<td>12</td>
<td>37</td>
</tr>
<tr>
<td>ix</td>
<td>04/12/19</td>
<td>12</td>
<td>38</td>
</tr>
<tr>
<td>x</td>
<td>04/12/19</td>
<td>12</td>
<td>39</td>
</tr>
<tr>
<td>xi</td>
<td>04/12/19</td>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>xii</td>
<td>04/12/19</td>
<td>12</td>
<td>41</td>
</tr>
<tr>
<td>1</td>
<td>04/12/19</td>
<td>12</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>04/12/19</td>
<td>12</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>04/12/19</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>04/12/19</td>
<td>12</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>04/12/19</td>
<td>12</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>04/12/19</td>
<td>12</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>04/12/19</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>04/12/19</td>
<td>12</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>04/12/19</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>04/12/19</td>
<td>12</td>
<td>51</td>
</tr>
<tr>
<td>11</td>
<td>04/12/19</td>
<td>12</td>
<td>52</td>
</tr>
<tr>
<td>12</td>
<td>04/12/19</td>
<td>12</td>
<td>53</td>
</tr>
<tr>
<td>13</td>
<td>04/12/19</td>
<td>12</td>
<td>54</td>
</tr>
<tr>
<td>14</td>
<td>04/12/19</td>
<td>12</td>
<td>55</td>
</tr>
<tr>
<td>15</td>
<td>04/12/19</td>
<td>12</td>
<td>56</td>
</tr>
<tr>
<td>16</td>
<td>04/12/19</td>
<td>12</td>
<td>57</td>
</tr>
<tr>
<td>17</td>
<td>04/12/19</td>
<td>12</td>
<td>58</td>
</tr>
<tr>
<td>18</td>
<td>04/12/19</td>
<td>12</td>
<td>59</td>
</tr>
<tr>
<td>19</td>
<td>04/12/19</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>04/12/19</td>
<td>12</td>
<td>61</td>
</tr>
<tr>
<td>21</td>
<td>04/12/19</td>
<td>12</td>
<td>62</td>
</tr>
<tr>
<td>22</td>
<td>04/12/19</td>
<td>12</td>
<td>63</td>
</tr>
<tr>
<td>23</td>
<td>04/12/19</td>
<td>12</td>
<td>64</td>
</tr>
<tr>
<td>24</td>
<td>04/12/19</td>
<td>12</td>
<td>65</td>
</tr>
<tr>
<td>25</td>
<td>04/12/19</td>
<td>12</td>
<td>66</td>
</tr>
<tr>
<td>26</td>
<td>04/12/19</td>
<td>12</td>
<td>67</td>
</tr>
<tr>
<td>27</td>
<td>04/12/19</td>
<td>12</td>
<td>68</td>
</tr>
<tr>
<td>28</td>
<td>04/12/19</td>
<td>12</td>
<td>69</td>
</tr>
<tr>
<td>29</td>
<td>04/12/19</td>
<td>12</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>71</td>
</tr>
</tbody>
</table>

Date Accepted: **ERIC J MONTEITH**
Digitally signed by ERIC J MONTEITH
Date: 2019/05/09
07:38:17 -06'00''

FAA Part 135 Principal Operations Inspector – ANM-FSDO-03
List of Effective Pages

<table>
<thead>
<tr>
<th>Page</th>
<th>Date</th>
<th>Rev No.</th>
<th>Page</th>
<th>Date</th>
<th>Rev No.</th>
<th>Page</th>
<th>Date</th>
<th>Rev No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>04/12/19</td>
<td>12</td>
<td>147</td>
<td>04/12/19</td>
<td>12</td>
<td>183</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>113</td>
<td>04/12/19</td>
<td>12</td>
<td>148</td>
<td>04/12/19</td>
<td>12</td>
<td>184</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>114</td>
<td>04/12/19</td>
<td>12</td>
<td>149</td>
<td>04/12/19</td>
<td>12</td>
<td>185</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>115</td>
<td>04/12/19</td>
<td>12</td>
<td>151</td>
<td>04/12/19</td>
<td>12</td>
<td>186</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>116</td>
<td>04/12/19</td>
<td>12</td>
<td>152</td>
<td>04/12/19</td>
<td>12</td>
<td>187</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>117</td>
<td>04/12/19</td>
<td>12</td>
<td>153</td>
<td>04/12/19</td>
<td>12</td>
<td>188</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>118</td>
<td>04/12/19</td>
<td>12</td>
<td>154</td>
<td>04/12/19</td>
<td>12</td>
<td>189</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>119</td>
<td>04/12/19</td>
<td>12</td>
<td>155</td>
<td>04/12/19</td>
<td>12</td>
<td>190</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>120</td>
<td>04/12/19</td>
<td>12</td>
<td>156</td>
<td>04/12/19</td>
<td>12</td>
<td>191</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>121</td>
<td>04/12/19</td>
<td>12</td>
<td>157</td>
<td>04/12/19</td>
<td>12</td>
<td>192</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>122</td>
<td>04/12/19</td>
<td>12</td>
<td>158</td>
<td>04/12/19</td>
<td>12</td>
<td>193</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>123</td>
<td>04/12/19</td>
<td>12</td>
<td>159</td>
<td>04/12/19</td>
<td>12</td>
<td>194</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>124</td>
<td>04/12/19</td>
<td>12</td>
<td>160</td>
<td>04/12/19</td>
<td>12</td>
<td>195</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>125</td>
<td>04/12/19</td>
<td>12</td>
<td>161</td>
<td>04/12/19</td>
<td>12</td>
<td>196</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>126</td>
<td>04/12/19</td>
<td>12</td>
<td>162</td>
<td>04/12/19</td>
<td>12</td>
<td>197</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>127</td>
<td>04/12/19</td>
<td>12</td>
<td>163</td>
<td>04/12/19</td>
<td>12</td>
<td>198</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>128</td>
<td>04/12/19</td>
<td>12</td>
<td>164</td>
<td>04/12/19</td>
<td>12</td>
<td>199</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>129</td>
<td>04/12/19</td>
<td>12</td>
<td>165</td>
<td>04/12/19</td>
<td>12</td>
<td>200</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>130</td>
<td>04/12/19</td>
<td>12</td>
<td>166</td>
<td>04/12/19</td>
<td>12</td>
<td>201</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>131</td>
<td>04/12/19</td>
<td>12</td>
<td>167</td>
<td>04/12/19</td>
<td>12</td>
<td>202</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>132</td>
<td>04/12/19</td>
<td>12</td>
<td>168</td>
<td>04/12/19</td>
<td>12</td>
<td>203</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>133</td>
<td>04/12/19</td>
<td>12</td>
<td>169</td>
<td>04/12/19</td>
<td>12</td>
<td>204</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>134</td>
<td>04/12/19</td>
<td>12</td>
<td>170</td>
<td>04/12/19</td>
<td>12</td>
<td>205</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>135</td>
<td>04/12/19</td>
<td>12</td>
<td>171</td>
<td>04/12/19</td>
<td>12</td>
<td>206</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>136</td>
<td>04/12/19</td>
<td>12</td>
<td>172</td>
<td>04/12/19</td>
<td>12</td>
<td>207</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>137</td>
<td>04/12/19</td>
<td>12</td>
<td>173</td>
<td>04/12/19</td>
<td>12</td>
<td>208</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>138</td>
<td>04/12/19</td>
<td>12</td>
<td>174</td>
<td>04/12/19</td>
<td>12</td>
<td>209</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>139</td>
<td>04/12/19</td>
<td>12</td>
<td>175</td>
<td>04/12/19</td>
<td>12</td>
<td>210</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>140</td>
<td>04/12/19</td>
<td>12</td>
<td>176</td>
<td>04/12/19</td>
<td>12</td>
<td>211</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>141</td>
<td>04/12/19</td>
<td>12</td>
<td>177</td>
<td>04/12/19</td>
<td>12</td>
<td>212</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>142</td>
<td>04/12/19</td>
<td>12</td>
<td>178</td>
<td>04/12/19</td>
<td>12</td>
<td>213</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>143</td>
<td>04/12/19</td>
<td>12</td>
<td>179</td>
<td>04/12/19</td>
<td>12</td>
<td>214</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>144</td>
<td>04/12/19</td>
<td>12</td>
<td>180</td>
<td>04/12/19</td>
<td>12</td>
<td>215</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>145</td>
<td>04/12/19</td>
<td>12</td>
<td>181</td>
<td>04/12/19</td>
<td>12</td>
<td>216</td>
<td>04/12/19</td>
<td>12</td>
</tr>
<tr>
<td>146</td>
<td>04/12/19</td>
<td>12</td>
<td>182</td>
<td>04/12/19</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date Accepted:

FAA Part 135 Principal Operations Inspector – ANM-FSDO-03
1 Introduction and General Information

[119.43, 119.47, 135.21, 135.23, 135.81]

This manual sets forth Air Methods procedures and policies that are acceptable to the Administrator of the Federal Aviation Administration. Air Methods will keep this manual current with revisions as necessary. Air Methods maintains one copy of this manual in current form at the principal base of operations located at 5500 South Quebec St., Ste. 300 Greenwood Village, CO 80111. The director of operations will maintain the original copy. The pilot will have the responsibility to keep it current, and to see that all new revisions are forwarded to the chief pilot.

Air Methods disburses copies of this manual in the following manner.

- One copy of the complete manual will be kept in each aircraft. The pilot-in-command (PIC) will make this manual available to ground and flight personnel for their use when the aircraft is away from the home base.

- One copy of the complete manual will be kept at each base of operations so that the pilots, and ground and maintenance personnel may have access to the copy at anytime. All Air Methods personnel must use this manual in conducting all operations. As required by 14 CFR 135.293(a)(1), all pilots will be tested at least annually on their knowledge of this manual via the LINK training software (GOM module). All personnel must have knowledge of this manual in its entirety, in addition to the test on their 293 check rides.

- The chief pilot will have a copy of this manual at his office. It will be the chief pilot’s responsibility to maintain a current copy in all aircraft and on the Air Methods intranet.

- Other persons as assigned.

NOTE A PDF version of the General Operations Manual and Operations Specifications posted on the Air Methods’ Flightdeck or stored on the base computer, or on an AMC Electronic Flight Bag shall be available for review by all Air Methods employees and may be used for each base of operations as a replacement for a hard copy.

The Pilots Reference Library is available on the Air Methods > Flightdeck under Operations > 135 Aviation Ops. CFR Parts 91 and 135 are available on the Air Methods > Flightdeck under Operations > 135 Aviation Ops > (in the Pilots Reference Library section) or directly at https://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&tpl=/ecfrbrowse/Title14/14tab_02.tpl.
Introduction and General Information

Air Methods has also furnished the Denver Flight Standards District Office (FSDO) of the Federal Aviation Administration (FAA) with a current and complete copy of the manual. The director of operations will furnish the FAA with all requests for changes and additions to this manual in a timely manner.

Great care has been taken to ensure that this manual is not contrary to any applicable Federal regulations, Air Methods Operating Certificate, or Air Methods Operations Specifications. However, errors do sometimes occur despite all efforts. If you find such a conflict; the regulation, certificate, or operations specification will take precedence. You are required to bring any such conflicts to the attention of the director of operations for correction.

All Air Methods aircraft will be operated in accordance with the manufacturer’s Aircraft Flight Manual. If a conflict is discovered in this GOM manual, the manufacturer’s Aircraft Flight Manual will take precedence. You are required to bring any such conflicts to the attention of the director of operations for correction.

Purpose

This manual has been prepared to cover the policies and procedures governing the operation of the flight department of Air Methods Corporation (herein referred to as Air Methods) under its Air Carrier Certificate QMLA253U (a sample is included in Appendix A, “Sample Forms and Documents,” on page 188.). The purpose of this manual is to ensure the utmost in safety of operation and the general efficiency of the flight department. It provides firm guidelines to enable all company personnel to carry out their assigned duties and responsibilities in accordance with company policies and FAA regulations.

Distribution

A copy of this manual will be provided at the following locations and be readily available to Air Methods personnel.

- Flight Standards District Office (FAA)
- Each base of operation
• Each aircraft

NOTE A PDF version of the General Operations Manual and Operations Specifications posted on the Air Methods’ Flightdeck or stored on the base computer, or on an AMC Electronic Flight Bag shall be available for review by all Air Methods employees and may be used for each base of operations as a replacement for a hard copy.

Revision Control

[14 CFR 135.21]

In accordance with 14 CFR 135.21(a), revisions will be prepared by the director of operations. Each revision will have a revision number and date in the upper right corner of the page. Revisions will be consecutively numbered. All revisions will be submitted to the FAA for review and acceptance. Revisions will be recorded in the Record of Revisions. For paper copies, old pages will be replaced with the new effective pages and tracked using the Log of Revisions.

Operations Specifications changes will not be reflected in the General Operations Manual revisions. Currency of Operations Specifications is found in each table of contents for each applicable section.

General Operations Manual revision control is accomplished in the footer of each page.

Revisions to all manuals representing a base or aircraft or within a particular department at the Certificate Holder’s Corporate Offices will be sent to the regional aviation director or department head, as appropriate. Revisions, when emailed, will be accompanied by an Operations Publication Verification Form – FO-5412. Each regional aviation director or department head will verify that the appropriate manuals under his or her control have been revised.

Once verification is complete, a completed OPVF will be sent to the regional aviation director, who will send it to PubVerifications-Ops@airmethods.com for subsequent posting in the Outlook public folders.

New material in the latest revision will be marked with a vertical bar to the right of text, for ease in identifying revised content.
The Corporate Publications Department oversees the creation and revision of Air Methods controlled documentation. Managers may submit suggestions and corrections for incorporation into a manual by submitting a completed Document Change Request (CP-5002) form (accessible on Flightdeck > Resources > Corporate Forms (AMC)) to Corporate Publications at corporate.publications@airmethods.com or by contacting the manual’s owner directly with recommended changes. The Corporate Publications will save suggested updates for the next revision of the manual and coordinate with the manual owner to incorporate changes. Changes will be summarized in the change summary table and indicated throughout the manual by change bars. For further details on manual revisions and control, refer to the Document Control Manual on Flightdeck.

Applicability

[Operations Specification A001]

This manual prescribes the regulatory requirements and guidance to conduct helicopter air ambulance operations.

All operations conducted by Air Methods shall be considered 14 CFR Part 135 except for the following:

- Training flights
- Maintenance flights
- Ferry flights
- Helicopter repositioning flights
- Airplane positioning flights with only Air Methods pilots aboard

Airplane positioning flights conducted under 14 CFR Part 91 will still conform to all flight-time limits and rest time requirements of 14 CFR 135 and this General Operations Manual.

All helicopter operations (including those listed above conducted under 14 CFR Part 91 (in VFR conditions) shall adhere to the weather minimums listed in 14 CFR 135.609.
Emergency Deviation

When emergency conditions do not allow the company to effect a timely amendment of the General Operations Manual or Operations Specifications, the director of operations, chief pilot, or director of maintenance will seek and receive a verbal authorization from the Certificate Holding District Office (CHDO). The director of operations, chief pilot, or director of maintenance in turn will provide documentation describing the nature of the emergency within 24 hours of the verbal authorization.

Safety Management System

Air Methods has an established Safety Management System (SMS).

Acceptance of this manual does not constitute approval or acceptance of any part, process, element or component of Air Methods' SMS.

1.1 Air Methods Bulletins

When preparing a company manual of any kind, it is not possible to anticipate all of the issues and questions that might arise and need to be addressed. Air Methods bulletins are used to impart significant operations-related information, answer questions at the base or company level, or supplement, but not change, the guidance contained in this General Operations Manual. Bulletins are not issued with an expiration date. Periodically, each bulletin will be reviewed for continued validity and pertinence.

All current bulletins are posted on the Air Methods Flightdeck under Corporate Publications. The director of operations will route applicable bulletins to the FAA. Bulletins are an informal means of addressing, on an as-needed basis, significant operations or specific aircraft issues. Input from the field is encouraged and appreciated. Aviation managers will ensure that pilots and mechanics read and comply with applicable bulletins.

The director of operations, director of maintenance, chief pilot, or director of aviation risk and compliance may issue Air Methods Bulletins that contain new content.

For more detail on the Air Methods Bulletins, please see the Air Methods Document Control Manual.
1.2 Electronic Manuals and Recordkeeping Systems

Access to this manual, as well as other Air Methods forms, records, and manuals is provided in an electronic format through the Air Methods Flight Deck portal (https://flightdeck.airmethods.com). Manuals and other documents required for flight operations are also accessible to flight crews on the Electronic Flight Bag (EFB). To simplify document control, Air Methods maintains a Master Manual of Manuals – 5712 (MMoM) which identifies the current revision number for these documents and the location where the electronic manuals can be found. The individual manual location is noted by the word “FD Portal” in the “MM Location” column of the MMoM. Likewise, manuals assigned to the aircraft EFB are noted with “Folder/NO.” column of the MMoM to signify that this manual is available in Air Vault Content Locker, as part of our Electronic Flight Bag.

The director of operations is responsible for revisions to the electronic presentation of this manual and Air Methods Operations Specifications.

The director of aviation risk and compliance will maintain the MMoM Log of Revisions indicating updates to the electronic and paper manuals.

Individuals identified in sections 1.4 and 1.5 of this chapter will be supplied access to an electronic copy of the manual. The Portal may only be accessed by Air Methods employees that have been issued a username and password.

In the event that the Air Methods Portal is not available due to technical or other difficulties, Air Methods pilots or other key personnel may reference an electronic version of the required Manuals and Operations Specifications on one of two iPads assigned to each AMC aircraft as part of the Electronic Fight Bag (EFB) equipment authorized by A061 Table 1.

The notification sent via Air Methods email will alert electronic manual users of a new revision to an electronic manual. Records of this email notification will be kept by the director of operations.

Air Methods is authorized to use the following electronic systems.

- Electronic Manuals
- Electronic Recordkeeping
- Electronic Signatures
1.3 Air Methods Forms and Documents

The forms listed below are referenced in this manual. For your convenience, links to documents are provided below, as well as under the specific content that refers to each document. Fillable forms are available on Flightdeck > Resources > Corporate Forms (AMC). Links to other sites or to samples included in this manual are provided as needed.

- Air Methods Part 135 Air Carrier Certificate
- Air Methods Part 133 Operating Certificate
- Air Methods Bulletin Template
- Airplane Trip Sheet – FO-5211
- AMC Service Difficulty Report – FO-5214 (Page 1 of 4)
- Daily Flight Log / Load Manifest – FO-5155
- Deferred Discrepancy Log – FO-5157
- Do Not Fly – Logbook and/or iPad Removed
- EFB Discrepancy Form – 5713
- EFB – Master Manual of Manuals (MMoM) – 5715
- “EFB Operator Procedure Checklist – 5715.”
- IIMC Procedure Template – 5159
- Mechanical Interruption Summary Report – FO-5158
- MEL Deferral Extension – FO-5213
- NVG Pre-Operational Checklist – FO-5415 (Page 1 of 3)
- Operations Publication Verification Form – FO-5412
- Pre-start/Pre-takeoff Confirmation Check
- Record of Airman Flight and Duty Time
1.4 Organization Chart

1.5 Management Personnel

Air Methods has appointed the following persons to the management positions listed.

- Jason Quisling, director of operations
- Chris Meinhardt, director of maintenance
- Rajesh Helweg, chief pilot

Air Methods shall notify the CHDO within 10 days should a change be made to the director of operations, director of maintenance, or chief pilot positions.
The names of all regional aviation directors and regional maintenance directors will be included in Paragraph A006 of the Air Methods’ Operations Specifications. A current list of all regional aviation managers, program aviation managers, senior lead pilots, and lead pilots will be maintained by the director of operations. A listing of all certificate pilots will be maintained by the chief pilot.

Each of these people has the authority to act for Air Methods in their respective sphere and exercise operational control under 14 CFR 135.77. Their specific duties and responsibilities are listed on the following pages.

1.5.1 Director of Operations

- Reports to the executive vice president of operations.
- Supervises the regional aviation directors.
- Communicates with the FAA and the NTSB.
- Coordinates with the director of maintenance the timely correction of mechanical irregularities and discrepancies.
- Develops and approves Operations Department policies and procedures, to include the General Operations Manual, personnel policy (in conjunction with Human Resources), and all other policies which affect company operations.
- Devises revisions to this manual as needed, submits the proposed revisions to the FSDO, receives confirmation from the FSDO that the revisions are acceptable, and then distributes those revisions to the chief pilot.
- Ensures that all flight operations are conducted safely and in compliance with all CFRs, Operations Specifications, and Air Methods policies and procedures.
- Has authority to act for the Certificate holder, including the signing of FAA correspondence and Operations Specifications.
- Notifies the CHDO of any accidents, incidents, or other significant events.
- Oversees the development and implementation of the budget for the Operations Department.
- Responsible for issuing bulletins and periodically reviewing these for continued validity and pertinence.
• Serves as a member of the Air Methods Corporate Safety Committee.

• Notifies the CHDO of any change of the principle base of operations as required in 14 CFR 119.47(b).

• Disseminates information to all flight crewmembers pertaining to regulations and company policies and procedures.

• Actively participates in the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

1.5.2 Director of Maintenance

• Reports to the executive vice president of operations.

• Supervises regional maintenance directors and fleet maintenance senior manager.

• Completes the required MIS reports and forwards them to the FAA.

• Ensures Air Methods aircraft are maintained in an airworthy condition.

• Ensures all necessary work records and logbooks, including certification in the aircraft permanent maintenance records are accurate before granting approval for aircraft to return to service.

• Ensures compliance with applicable CFRs, manufacturer’s maintenance procedures, airworthiness directives, and service bulletins and service letters issued by Air Methods certificate management team.

• Ensures proper training of all maintenance technicians.

• Ensures that all maintenance technicians are certified and supervised according to the requirements specified in the CFRs.

• Maintains a close liaison with manufacturer’s representatives, parts supply vendors, repair facilities, and the FAA.

• Makes available to maintenance personnel this General Maintenance Manual, the applicable manufacturer’s maintenance manuals, service bulletins, service letters, airworthiness directives and any other required technical data. Ensures all maintenance personnel have a thorough knowledge of all of these items.

• Provides the current airworthiness status of the aircraft and the forecast down times to facilitate maintenance scheduling and ensure timely deferral or correction of aircraft discrepancies.
• Responsible for issuing bulletins and periodically reviewing these for continued validity and pertinence.
• Designated to apply for and receive Operations Specifications per 14 CFR Part 119.
• Actively participates in the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.
• Performs other duties as assigned.

1.5.3 Chief Pilot

• Reports to the director of operations.
• Supervises assistant chief pilots, check pilots, and aviation training coordinators.
• Advises the director of operations regarding out-of-compliance issues.
• Advises the director of operations regarding the training of flight crew personnel.
• Develops Flight Training and Standardization Department budget.
• Manages the new hire pilot program to include hiring requirements, the review of background checks and Pilot Record Improvement Act information and coordinates with Human Resources.
• Assists the director of operations in the oversight of flight operations, formulating operations policies, coordinating those policies, and coordinating operations and training.
• Develops and maintains the pilot and crewmember training manuals and programs, and aircraft checklists.
• Ensures that Air Methods aircraft are equipped with required company flight publications (charts, Jeppesen, NOAA, aircraft flight manuals, etc.). Ensures publications are revised in a timely manner.
• Ensures that Air Methods aircraft are properly equipped for applicable operations.
• Ensures that all flight crew personnel are current, certified, and qualified, in accordance with the requirements specified in the CFRs.
• Ensures that the aircraft and base copies of this General Operations Manual and Operations Specifications are current. Revisions shall be submitted by the chief pilot to the appropriate regional aviation directors.
• In the absence or unavailability of the director of operations, the chief pilot will assume those duties.
• Maintains qualification as PIC in at least one aircraft used in the certificate holder’s operation.
• Provides supervision to all company pilots concerning regulatory issues.
• Responsible for ensuring aircraft procedures are standardized throughout the Air Methods fleet.
• Responsible for ensuring the logging and tracking of the Record of Airman Flight and Duty Time forms in Pilot 411, which automatically generates the form. These forms must be filed by the tenth day of the following month.
• Responsible for ensuring the maintenance of proficiency records, pilot files, duty time records, reports, and correspondence pertaining to flight operations activities in accordance with the CFRs.
• Responsible for the development of policies for Air Methods flight instructors, ground instructors, and check pilots.
• Serves as a member of the Air Methods Systems Accountability Round Table.
• Submits all reports regarding flight personnel to the director of operations.
• Supervises all training activities of flight crew personnel, including training schedules.
• Performs other duties as assigned by the director of operations.
• Actively participates in the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

1.5.4 Assistant Chief Pilot

• Reports to the chief pilot.
• Oversees and coordinates all flight training, ground training qualifications, and scheduling.
• Participates as a member of the management team to promote a successful and safe operation.
• Responsible for thorough knowledge of Air Methods policies and procedures, the General Operations Manual, and pilot training program, and compliance with the CFRs and Aeronautical Information Manual.
• Maintains check pilot, flight instructor, and ground instructor status in aircraft under their purview.

• Researches, develops, writes and implements training materials and examinations used in ground and flight training.

• Conducts, audits, and supervises new-hire pilot basic indoctrination training.

• Conducts and audits simulator training.

• Participates in developing ways to operationally minimize preventable aircraft damage.

• Provides supervision of all company pilots concerning regulatory issues.

• Supervises the Flight Training and Standardization Department including supervision of instructors, check pilots, and training events.

• Responsible for the professional development of the Training Department staff including instructors and check pilots.

• Ensures timely and proper notification of all significant training and operations issues (including accidents and incidents) to the chief pilot. When the chief pilot is not available, notifies the director of operations (President of Air Medical Services in the absence of director of operations) and notifies the proper authorities (FAA, NTSB, etc.).

• Supervises and develops policies for company flight instructors, ground instructors, and check pilots.

• Assists the chief pilot in the development and management of the Training Department budget.

• In the absence of the chief pilot, calls for and conducts pilot review boards for flight-related issues.

• Actively participates in the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

• Other duties as assigned by the director of operations or chief pilot.
1.5.5 Director of Aviation Risk and Compliance

- Reports to the director of operations.
- Directly supervises employees in the Operational Control Center department including pilot records.
- Carries out Supervisory responsibilities in accordance with the organization’s policies and applicable laws.
- Provides direction to ensure flight operations achieves Air Methods goals and objectives associated with operational safety, security, reliability, efficiency, productivity and customer satisfaction.
- Responsible for Aviation compliance including all monitoring information, base and pilot risk determination and auditing.
- Ensures that operations are conducted in accordance with the conditions and restrictions of the Air Operator Certificate (AOC) and in compliance with applicable regulations and Air Methods Standards.
- Designs, implements and maintains a self-audit function to determine the level of risk, compliance, and safety in the flying operation and to use the information gained to correct faults and refine best practice.
- Ensures that processes needed for the SMS are established, implemented and maintained in flight operations.
- Implements programs that ensure compliance with applicable federal and state regulations, international standards and Air Methods policies and procedures.
- Provides specific knowledge of industry operational and safety matters to support other Air Methods departments.
- Participates in organizational meetings and continuing education programs, maintaining close liaison with the FAA, NTSB and industry organizations and associations.
- Continuously analyses current work flows and processes and implements process improvement plans.
- Assists in amending and maintaining parts A, B and C of the Operations Specifications.
- Plans, organizes, staffs and directs the best practices processes (system safety and security) into the flying operational systems to achieve the highest possible levels of safety and security.
• Ensures that audits of the operations department are conducted and documented on all identified hazards to determine if the assessed risk remains acceptable and that mitigation measures, if any, remain effective.

• Assist in investigating and identifying the root cause of safety-related occurrences, incidents and accidents for flight operations.

• Effectively represent Air Methods interests and support Air Methods Strategic Plan to industry organizations and government regulators.

• Performs other duties as assigned by the director of operations.

• Actively participates in the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

1.5.6 Regional Aviation Director

• Supervises the regional aviation managers.

• Ensures all operations within the region are compliant with regulations, operations specifications, and the General Operations Manual.

• Participates as a member of Air Methods management team to promote a successful operation.

• Responsible for aviation operations for the region. Has aviation decision-making authority for the region over the regional aviation manager.

• Communicates with the Regional Vice President to support business duties.

• Serves as Regional Vice President’s aviation advisor and aviation liaison with customers.

• Researches and reports to director of operations on FRx budget and actual variances.

• Ensures completion of aviation management portions of Base Activity Policy and Procedures Manual.

• Attends regional and program management team meetings as requested by the Regional Vice President.

• Responsible for thorough knowledge of Air Methods policies and procedures, assigned area’s operational goals and objectives, and ensures flight-operations activities are in compliance with the CFRs and the General Operations Manual guidelines.
• Ensures that revisions for the General Operations Manual and Operations Specifications are distributed and revised as required, and the Operations Publication Verification Form – FO-5412 is completed and submitted to the certificate holder. The fillable form is available on > Flightdeck > Resources > Corporate Forms (AMC).

• Ensures that the director of operations and chief pilot are notified as soon as practical in the event of encounters with the FAA, such as ramp checks, area visits, or request to contact ATC.

• Assists the Regional Business Director or Regional Operations Manager in the integration of aircraft, spare aircraft, and aviation personnel, ensuring availability in support of operational requirements.

• Assists Training Department to facilitate the coordination of locations, aircraft, and pilots for training events.

• Coordinates with Regional Safety Director on safety-related issues as needed.

• Investigates aviation mishaps and performs a root-cause analysis upon request.

• Advises the chief pilot regarding out-of-compliance or safety issues.

• Submits all required reporting regarding flight personnel to the chief pilot and the director of operations.

• Monitors the behaviors and performance of aviation personnel to ensure they comply with Air Methods policies and procedures.

• Coordinates with chief pilot and Corporate Human Resources regarding employee disciplinary issues related to aviation.

• Delegates non-aviation-related pilot behavior issues to the human resources generalist for disposition.

• May maintain qualification as a pilot in at least one aircraft used within area operations.

• May perform flight-instruction and check-pilot duties as directed by the chief pilot.

• Coordinates with the Corporate Safety Department on all safety matters.

• Attends base safety meetings when present at the base.

• Responsible for ensuring audit deficiencies and compliance issues in his area of responsibility are corrected.
• Coordinates with Regional Clinical Managers to schedule and conduct medical
crewmember and communication specialist initial and recurrent training.
Monitors crewmember required recurrent training compliance. Conducts Air
Medical Resource Management training.

• Ensures in-service training for aviation and medical personnel occurs before
placing a back-up aircraft back in service, and that training records are accurate.

• Responsible for conducting or coordinating ferry and MOC flights.

• Coordinates with Regional Operations Manager on regional spare aircraft
placement.

• Ensures pilot and aircraft schedules are consistently coordinated and posted.

• Monitors and responds to AIDMOR submissions.

• Coordinates with the regional maintenance director and/or regional maintenance
manager on timely correction of mechanical irregularities and discrepancies
impacting maintenance activities. Manages subscriptions for GPS updates for
assigned aircraft.

• Acts as the on-scene representative for all accidents and incidents occurring
within assigned area coordinated with appropriate regional field management.

• Promotes the SMS and the ASAP program. Educates pilots about the SMS and
the ASAP program.

• Responsible for ensuring each program under his authority is in compliance with
all company safety guidelines, including manuals, adverse weather plans, PAIPs,
etc.

• Provides technical and professional assistance to eliminate or control unsafe
behaviors and attitudes.

• Maintains and encourages objectivity in assessing or evaluating operations,
maintenance, fuel quality, Communication Specialist personnel, and the
requirement for anonymity regarding safety matters.

• Participates in the hiring process for all new pilots and conducts interviews.

• Develops justification for Hard-to-Fill stipends and other recruitment
enticements.

• Provides reports as requested by the director of operations.

• Actively participates in the company’s Safety Management System (SMS) and is
familiar with the SMS policies, processes, and procedures.

• Performs other duties as assigned.
1.5.7 Regional Aviation Manager

- Supervises the program aviation managers, senior lead pilots and the lead pilots.
- Ensures all operations within region are compliant with regulations, Operations Specifications, and the General Operations Manual.
- Participates as a member of Air Methods management team to promote a successful operation.
- Responsible for aviation operations for the region.
- Communicates with the Regional Vice President to support business duties.
- Serves as Regional Vice President’s aviation advisor and aviation liaison with customers.
- Researches and reports to director of operations on FRx budget and actual variances.
- Ensures completion of aviation management portions of Base Startup, Closure and Movement Manual.
- Attends regional and program management team meetings as requested by Regional Vice President.
- Responsible for thorough knowledge of Air Methods policies and procedures, assigned area’s operational goals and objectives, and ensures flight-operations activities are in compliance with the CFRs and Aeronautical Information Manual and the General Operations Manual guidelines.
- Ensures that revisions for the General Operations Manual and Operations Specifications are distributed and revised as required, and the appropriate Publications Verification Forms are completed and submitted to the certificate holder.
- Ensures that the director of operations and chief pilot are notified as soon as practical in the event of encounters with the FAA, such as ramp checks, area visits, or request to contact ATC.
- Assists the Regional Business Director or Regional Operations Manager in the integration of aircraft, spare aircraft and aviation personnel ensuring availability in support of operational requirements.
- Delegates aviation field logistical support to Regional Operations Manager.
- Delegates aviation administrative tasks to Regional Administrative Assistant.
- Attends or delegates attendance to fleet status teleconferences (KPI Dashboard).
• Coordinates pilot training in the region.
• Coordinates with Regional Safety Director on safety-related issues as needed.
• Investigates aviation mishaps and performs a root cause analysis upon request.
• Advises the chief pilot regarding out-of-compliance or safety issues.
• Submits all required reporting regarding flight personnel to the chief pilot and the director of operations.
• Monitors the behaviors and performance of aviation personnel to ensure they comply with Air Methods policies and procedures.
• Coordinates with chief pilot and Human Resources regarding employee disciplinary issues related to aviation.
• Delegates non-aviation-related pilot behavior issues to human resources generalist for disposition.
• Ensures that the 411 system is being used by pilots.
• May maintain qualification as a pilot in at least one aircraft used within area operations.
• May perform flight-instruction and check-pilot duties as directed by the chief pilot.
• Coordinates with the Corporate Safety Department on all safety matters.
• Attends base safety meetings when present at the base.
• Responsible for ensuring audit deficiencies and compliance issues found in their area of responsibility are corrected.
• Coordinates with Regional Clinical Managers to schedule and conduct medical crewmember and communication specialist initial and recurrent training. Monitors crewmember required recurrent training compliance. Conducts Air Medical Resource Management training.
• Ensures in-service training for aviation and medical personnel occurs before placing a back-up aircraft back in service and training records are accurate.
• Responsible for conducting or coordinating ferry and MOC flights.
• Coordinates with program aviation manager or Area Manager on regional spare aircraft placement.
• Ensures pilot and aircraft schedules are consistently coordinated and posted.
• Monitors and responds to AIDMOR submissions.
• Coordinates with the regional maintenance director and/or regional maintenance manager on timely correction of mechanical irregularities and discrepancies impacting maintenance activities. Manages subscriptions for GPS updates for assigned aircraft.

• Acts as the on-scene representative for all accidents and incidents occurring within assigned area and coordinates with appropriate regional field management.

• Promotes and educates with pilots the SMS and the ASAP programs.

• Responsible for ensuring each program under their authority is in compliance with all company safety guidelines, including manuals, adverse weather plans, PAIPs, etc.

• Provides technical and professional assistance to eliminate or control unsafe behaviors and attitudes.

• Maintains and encourages objectivity in assessing or evaluating operations, maintenance, fuel quality, Communication Specialist personnel and the requirement for anonymity with regard to safety matters.

• Participates in the hiring process for all new pilots and conducts interviews.

• Develops justification for Hard-to-Fill stipends and other recruitment enticements.

• Provides reports as requested by director of operations.

• Actively participates in the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

• Performs other duties as assigned.

1.5.8 Check Pilot

• Reports to the chief pilot through the assistant chief pilots for ground and flight standards and compliance issues.

• Performs as fight instructor and ground instructor.

• Evaluates operational compliance including all aspects of safety, flight operations, maintenance operations, and other procedures and policies as described in the General Operations Manual.
• Will correct out-of-compliance issues immediately. When unable to make immediate corrections, the check pilot will coordinate with the Regional Aviation or Maintenance Director, as appropriate to ensure the problem is corrected.

• Has authority to shut down base operations when appropriate for out-of-compliance or safety issues.

• Reports all out-of-compliance issues to the chief pilot or designee. Has discipline authority and coordinates with Human Resources, director of operations, chief pilot, assistant chief pilot, and Regional Directors on matters of discipline.

• Ensures that standardized training and checking procedures, provided by the certificate, are adhered to.

• Assists the chief pilot and assistant chief pilots in all pilot recordkeeping requirements, in accordance with applicable CFRs and policies.

• Submits required reports in a timely manner.

• Operates advanced aviation training devices (AATDs) including movement of the device. Operates full-motion simulators.

• Assists in the development and implementation of flight- and ground-training schedules.

• Is knowledgeable about CFRs and Air Methods General Operations Manual and other required manuals.

• Assists the chief pilot and assistant chief pilots in the development of the aircraft checklist and Air Methods pilot training programs.

• Assists the chief pilot, assistant chief pilot, and director of safety in investigating aviation mishaps and performing root-cause analyses.

• AATD instructors will be designated as Air Transportation Flight Instructor-FTD and will maintain familiarity with AMC operations and procedures. AATD instructors must possess a Commercial Certificate, but are not required to maintain a Class II FAA physical.

• AATD instructors must complete initial check pilot or training captain training, and complete an observation within the previous 24 calendar months by an AMC evaluator before performing instructional duties in an FTD.

• Develops and conducts (as appropriate):
 – Basic indoctrination training
 – Initial and recurrent ground training
 – Initial and recurrent flight training
– Instrument training (ground and flight)
– Night vision goggle (NVG) training (ground and flight)

• Ensures a pilot’s eligibility for the position before beginning any training and before each evaluation, by reviewing all pertinent data on the pilot certificate (e.g., category and class, pilot ratings, English proficiency, limitations, if any, and signature) and medical certificate (class, date, limitations, and signatures).

• Actively participates in the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

• Performs other duties as assigned by the chief pilot or assistant chief pilots.

1.5.9 Program Aviation Manager

• Reports to the regional aviation director or the regional aviation manager.

• Supervises the lead pilots and base managers in the performance of their duties.

• Acts as the on-scene representative for all accidents and incidents occurring at his base. All action taken performing this duty will be coordinated with the regional aviation director and director of operations. In a case where the program aviation manager is the individual involved in the accident or incident, the regional aviation director will assume these duties.

• Assists in coordinating base visits for potential pilot and mechanic candidates, and provides input and recommendations to the corporate office as part of the hiring process.

• Assists the base lead pilot in developing an Inadvertent Instrument Meteorological Conditions (IIMC) recovery procedure, as described in Section 2.27 on page 78.

• Assists the regional aviation director in coordinating the scheduling of pilots and aircraft.

• Attends hospital and program meetings or training as required.

• Completes and files all required reports and documents.

• Conducts a monthly base meeting.

• Coordinates with the chief pilot to ensure differences training is conducted for base pilots before placing a back-up aircraft in service. Furthermore, ensures relief pilots have completed differences training, when necessary, before assuming duties.
• Coordinates with the regional maintenance manager the timely correction of mechanical irregularities and discrepancies.

• Coordinates with the regional aviation director and Human Resource Department regarding employee disciplinary issues.

• Coordinates with the regional aviation director to ensure compliance with CFRs, and company policies and procedures.

• Develops a Post-Accident/Incident Plan (PAIP) in accordance with Section 2.39 on page 88.

• Ensures that new pilots receive Air Methods 411 system training before their first scheduled shift.

• Ensures that the Air Methods 411 system is being correctly used by pilots and corrects pilot entry errors as necessary.

• Ensures that all flight operations are conducted safely and in compliance with all CFRs, General Operations Manual, Operations Specifications, and company policies.

• Ensures that all pilot records are sent to and received by the flight records department, and all drug/alcohol program-related forms are sent to and received by the Air Methods drug and alcohol plan manager.

• Responsible for verifying accuracy of all pilot records before submission to the corresponding record-retention entity. Records are sent to the region-specific 135forms@airmethods.com email address listed in the Outlook Address Book.

• Ensures that all respective pilots and mechanics read and comply with applicable bulletins.

• Ensures that an inventory of the aircraft and equipment is conducted before movement of a backup aircraft to a new base, and upon arrival at that new base. By fax or email, sends a PDF copy of the completed inventory to the regional aviation director.

• Ensures that each base has developed and is utilizing an adverse weather plan as outlined under “Adverse- or Cold-Weather Operations” on page 39.

• Ensures that in-service training for medical personnel takes place before a back-up aircraft is placed in service.

• Ensures that pilots receive base orientation as outlined in the Air Methods Pilot Training Program (PTP). Further, ensures pilots are scheduled for day shifts, sufficient to guarantee comfort with the local flying area before being scheduled for any night shifts.
• Ensures that revisions received from the certificate holder for the General Operations Manual, Operations Specifications, training manuals, and aircraft flight manuals are completed as required. Ensures that the completed Operations Publication Verification Form is forwarded to the regional aviation director.

• Ensures that the communication personnel training (Annex 34 of the PTP) is completed for all communications personnel at their program. The course completion documentation will be retained at the local program level.

• Keeps current the communications specialist list for their respective programs. Audits the list on a monthly basis. The list is available on the Air Methods > Flightdeck > Operations 135 Aviation Ops > Lists (in the Quick Launch panel) >Comm Spec. Listing.

• Ensures that the medical personnel crewmember training is completed and current. The flight records department maintains a report of each crewmember’s training.

• Ensures the medical personnel thoroughly clean the passenger compartment before movement of a back-up aircraft.

• Ensures the regional aviation director is notified in the event of encounters with the FAA, such as ramp checks, base visits, or requests to contact ATC. Notification may be made by email or phone during normal duty hours. The notification must include but not be limited to location, date, time, inspector name, areas covered, and areas of concern.

• Monitors and ensures that the currency and qualification requirements are met for pilots at the program. This includes recurrent training, qualification check ride, annual medical, and other required documents. If a requirement will expire, then the chief pilot must be notified before the expiration.

• Monitors the attitude and performance of the pilots and mechanics assigned to their program to ensure that they comply with Air Methods policies and expectations.

• Participates as a member of the program’s management team to promote a successful operation.

• Performs the duties of the Aviation Safety Manager for the program, including conducting two safety and operations audits at each base annually.

• Responsible for correcting compliance or safety issues when directed by the director of operations, director of maintenance, chief pilot, director of aviation risk and compliance, regional aviation director, or director of safety.
• Responsible for daily operations of all program aviation operations. The Manager functions as a leader for the aviation team and is responsible for carrying out the mission, goals and objectives of the program and Air Methods. The program aviation manager is responsible for ensuring that all company employees make safety the first priority in all activities.

• Responsible for directing and overseeing the completion of daily operational activities of the aviation staff. The Manager is responsible for a thorough knowledge of the program and Air Methods policies and procedures, as well as meeting operational goals and objectives.

• Responsible for completing and keeping updated the NVG List on > Flightdeck > Resources > Corporate Publications > Supply Chain Publications > Night Vision Goggle Publications.

• Actively participates in the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

• Performs other duties as assigned.

1.5.10 Senior Lead Pilot

• Reports to the regional aviation manager.

• Supervises the lead pilots and pilots in the performance of their duties.

• Acts as the on-scene representative for all accidents and incidents occurring at their base. All action taken performing this duty will be coordinated with the regional aviation director and director of operations. In a case where the senior lead pilot is the individual involved in the accident or incident, the regional aviation director will assume these duties.

• Assists in coordinating base visits for potential pilot candidates.

• Assists the base lead pilot in developing an Inadvertent Instrument Meteorological Conditions (IIMC) recovery procedure, as described in Section 2.27 on page 78.

• Assists the regional aviation director in coordinating the scheduling of pilots and aircraft.

• Attends hospital and program meetings or training as required.

• Completes and files all required reports and documents.

• Conducts a monthly base meeting.
• Coordinates with the chief pilot to ensure Differences Training is conducted for base pilots before placing a back-up aircraft in service. Furthermore, ensure relief pilots have completed differences training, when necessary, before assuming duties.

• Coordinates with the regional maintenance manager the timely correction of mechanical irregularities and discrepancies.

• Coordinates with the regional aviation director to ensure compliance with CFRs and company policies and procedures.

• Develops a PAIP in accordance with “Post-Accident Incident Plan (PAIP)” on page 88.

• Ensures that new pilots receive Air Methods 411 system training before their first scheduled shift.

• Ensures that the Air Methods 411 system is being correctly used by pilots and corrects pilot entry errors as necessary.

• Audits the DFL report on the Air Methods Intranet to ensure that they are being closed every 24 hours and audited by the base lead pilot every 7 days.

• Ensures that all flight operations are conducted safely and in compliance with all CFRs, General Operations Manual, Operations Specifications, and company policies.

• Ensures that all pilot records are sent to and received by the flight records department, and all drug/alcohol program-related forms are sent to and received by the Air Methods drug and alcohol plan manager.

• Responsible for verifying accuracy of all pilot records before submission to the corresponding record-retention entity. Records are sent to the region-specific 135FORMSregion@airmethods.com email address listed in the Outlook Address Book.

• Ensures that all respective pilots read and comply with applicable bulletins.

• Ensures that an inventory of the aircraft and equipment is conducted before movement of a backup aircraft to a new base, and upon arrival at that new base. By fax or email, sends a copy of the completed inventory to the regional aviation director.

• Ensures that each base has developed and is utilizing an adverse weather plan, as outlined under “Adverse- or Cold-Weather Operations” on page 39.

• Ensures that in-service training for medical personnel takes place before a back-up aircraft is placed in service.
• Ensures that new and relief pilots receive base orientation as outlined in the pilot training program, Annex 28 (Local Flying Area Curriculum Segment). Further, ensures new and relief pilots are scheduled for day shifts, sufficient to guarantee comfort with the local flying area before being scheduled for any night shifts.

• Ensures that revisions received from the certificate holder for the General Operations Manual, Operations Specifications, training manuals, and aircraft flight manuals are completed as required. Ensures that the completed Operations Publication Verification Form is forwarded to the regional aviation director.

• Ensures that the communication personnel training (Section 11) is completed for all communications personnel. The course completion documentation will be retained at the local program level.

• Keeps current the respective programs’ Communications Specialists List on the 135 Aviation Ops - Air Methods page (Flightdeck > Operations > 135 Aviation Ops). Audits the list on a monthly basis.

• Ensures that the medical personnel crewmember training is completed and current. The flight records department maintains a report of each crewmember’s training.

• Ensures the medical personnel thoroughly clean the passenger compartment before movement of a back-up aircraft.

• Ensures the regional aviation director is notified in the event of encounters with the FAA such as ramp checks, base visits, or requests to contact ATC. Notification may be made by email or phone during normal duty hours. The notification shall include but not be limited to location, date, time, Inspector name, areas covered and areas of concern.

• Monitors and ensures that the currency and qualification requirements are met for pilots at the program. This includes recurrent training, qualification check ride, annual medical, and other required documents. If a requirement will expire, then the chief pilot must be notified before the expiration.

• Monitors the performance of the pilots assigned to their program to ensure that they comply with Air Methods policies and expectations.

• Notifies the regional aviation director of events that involve policy or regulatory violations or other pilot-related matters.

• Participates as a member of the program’s management team to promote a successful operation.

• Performs the duties of the Aviation Safety Manager for the program including conducting two safety and operations audits at each base annually.
• Responsible for correcting compliance or safety issues when directed by the
director of operations, director of maintenance, chief pilot, director of aviation
risk and compliance, regional aviation director, or director of safety.

• Responsible for daily operations of all program aviation operations. The
Manager functions as a leader for the aviation team and is responsible for
carrying out the mission, goals and objectives of the program and Air Methods.
The Manager is responsible for ensuring that all pilots make safety a priority.

• Responsible for directing and overseeing the completion of daily operational
activities of the aviation staff. The Manager is responsible for a thorough
knowledge of the program and Air Methods policies and procedures as well as
meeting operational goals and objectives.

• Responsible for completing and keeping updated the NVG List on > Flightdeck
> Resources > Corporate Publications > Supply Chain Publications > Night
Vision Goggle Publications.

• Reviews and approves, as appropriate, all pilot expense, vacation, holiday, and
workover/overtime reports.

• Actively participates in the company’s Safety Management System (SMS) and is
familiar with the SMS policies, processes, and procedures.

• Performs other duties as assigned.

1.5.11 Base Lead Pilot

• Reports to the aviation manager or senior lead pilot.

• Supervises the applicable base line pilots in the performance of their duties.

• Conducts a monthly base meeting.

• Coordinates with the aviation manager concerning disciplinary actions regarding
their base pilots.

• Coordinates with the regional aviation director in the development of a local area
definition as required by Operations Specifications, Paragraph A021. Submits the
local area definition to the chief pilot for approval.

• Develops a local area reference manual, as described under “Airport
Requirements and Diagrams” on page 43.
• Develops an Inadvertent Instrument Meteorological Conditions (IIMC) recovery procedure, as described in Section 2.27 on page 78, posts a copy at the base location, and provides a copy in the aircraft.

• Develops and keeps updated a base adverse weather plan, as described under “Adverse- or Cold-Weather Operations” on page 39. Submits plan to regional aviation director for review and approval.

• Develops, posts, and maintains a Local Area Hazards Map at the base location.

• Ensures that all aircraft are properly equipped for applicable operations.

• Ensures that all pilot-related reports and records are forwarded to the aviation manager. Responsible to check for correctness before submission.

• Ensures that all pilots report to work with appropriate rest and are capable of performing the functions of a flight crewmember.

• Ensures that load manifest forms are maintained and available for review at the base location for 30 days. After 30 days, ensures that they are discarded.

• Ensures that medical equipment is weighed, as specified under Section 2 of this manual.

• Ensures that pilot scheduling complies with the crewmember flight-time and duty period limitations and rest requirements per the CFRs.

• Ensures that pilots arriving for duty conduct shift change briefings with the pilot going off duty, with medical personnel, and with the appropriate communications facility. These briefings will include, but are not limited to aircraft status, interrupted flights, hazards map updates, forecast and current weather, medical interior issues, pending missions (PRs, training, medical), ride along, sterile cockpit, and any other pertinent information as appropriate.

• Ensures that revisions received from the certificate holder for the General Operations Manual, Operations Specifications, and training manuals are completed as required. Ensures that the completed Operations Publication Verification Form is forwarded to the aviation manager.

• Ensures that the Air Methods 411 system is being correctly used by pilots.

• Audits Air Methods 411 flight log entries at the end of the month, and reports errors to pilots or the aviation manager for correction.

• Ensures that scheduling for holidays, and safety and training meetings is done in a manner that ensures equitable treatment for each person.
• Ensures that sufficient and proper flight-time and duty records are retained at the base location to prove flight crewmembers meet currency requirements per the CFRs.

• Ensures the regional aviation director is notified in the event of encounters with the FAA such as ramp checks, base visits, or requests to contact ATC. Notification may be made by email or phone during normal duty hours. The notification shall include but not be limited to location, date, time, Inspector name, areas covered and areas of concern.

• In the absence of an assigned Base Safety Manager, acts in the capacity of and performs the duties of the Base Safety Manager. The duties of the Base Safety Manager can be found in the Air Methods SMS Policies and Procedures Manual.

• Monitors and ensures that the currency requirements are met for pilots at the base. This includes recurrent training, qualification check ride, annual medical, and other required documents. If a requirement will expire, the aviation manager must be notified before the expiration.

• Responsible for correcting compliance or safety issues when directed by the director of operations, chief pilot, director of aviation risk and compliance, director of safety, program aviation manager, or check pilot.

• Responsible for daily operations of all aviation services at their respective base. The lead pilot functions as a leader for his base pilots and is responsible for carrying out the mission, goals, and objectives of Air Methods. The lead pilot is responsible for ensuring that all aviation employees make safety the first priority in all activities.

• Responsible for directing and overseeing the completion of daily operational activities of the base aviation staff.

• Responsible for the coordination of pilot scheduling at their base and assists the aviation manager in coordinating operations and training.

• Responsible for thorough knowledge of policies and procedures as well as meeting operational goals and objectives.

• Responsible for ensuring the night vision goggles are maintained according to the procedures in the SOP document on > FlightDeck > Resources > Corporate Publications > Supply Chain Publications > Night Vision Goggle Publications.

• Actively participates in the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

• Performs other duties as assigned.
1.5.12 Pilot-in-Command (PIC)

- Reports to the base lead pilot.
- Final authority for the safety of passengers, cargo, and medical personnel, and has operational control for all flights which they initiate.
- Exercises second-tier operational control as described under “Operational Control” on page 34.
- Protects company aircraft from damage, weather, and unauthorized entry. When weather dictates and it is practical, aircraft will be put inside a hangar.
- Accomplishes and properly documents pre-flight inspections and inspects maintenance documents, to include status sheet, upon arrival for duty to determine the airworthiness of the aircraft. Reports any discrepancies to maintenance and documents appropriately.
- Except during refueling operations as described in this manual, the pilot will not go beyond the rotor arc of a running helicopter.
- Keeps the aircraft exterior clean and assists in keeping the base of operations presentable. Cockpit cleanliness and organization are the sole responsibility of the pilot.
- Attends base monthly meetings and program training activities when duty time allows.
- Completes all training and qualification events required to maintain currency as dictated in 14 CFR Part 135.
- Completes the required recurrent training by the deadlines set out by the certificate holder.
- Conducts all flight operations in compliance with the CFRs, the aircraft flight manual, this General Operations Manual, Operations Specifications, and Air Methods policies and procedures.
- Ensures full and proper completion of all flight and maintenance logs, Load Manifest forms, Record of Airman Flight and Duty Time forms in Pilot 411, and the securing of the aircraft at the completion of the flight. The Record of Airman Flight and Duty Time form is required to be properly completed and submitted to the Certificate Holder by the tenth day of the following month.
- Ensures proper briefing of passengers per 14 CFR 135.117, and as described under “Passenger Briefing” on page 85.
• Ensures that a shift change briefing is conducted with the pilot going off duty, with medical personnel, and with the appropriate communications facility. These briefings will include, but are not limited to aircraft status, interrupted flights, hazards map updates, forecast and current weather, medical interior issues, pending missions (PRs, training, medical), ride along, sterile cockpit, and any other pertinent information as appropriate.

• Ensures their assigned aircraft navigation charts and documents are current and up to date.

• Ensures the regional aviation director is notified in the event of encounters with the FAA such as ramp checks, base visits, or requests to contact ATC. Notification may be made by email or phone during normal duty hours. The notification shall include but not be limited to location, date, time, Inspector name, areas covered and areas of concern.

• Updates Out of Service status in Pilot 411 each time the status of the base or aircraft changes.

• Maintains positive customer relations.

• Notifies the chief pilot or in his absence, the director of operations whenever a medical deficiency exists that would affect the safety of the flight.

• Performs a complete 360-degree walk around, to include inspection of the tail rotor, before entering the cockpit for flight and upon completion of each flight.

• Required to duty in on the Air Methods 411 system at the beginning of each shift and duty out at the end of each shift. If computer access is not available the pilot will call the OCC for guidance.

• Required to complete Air Methods 411 pilot logs before the end of each shift. If computer access is not available, the pilot log may be completed as soon as possible when computer access is available, but must be done as soon as possible. The Operational Control Center personnel, time permitting, may enter a flight for the pilot.

• Submits an Air Methods 411 flight release before the first flight of each shift. If computer access is not available the pilot will call the Operational Control Center for submission of the flight release.

• Advises the Communications Center of any issues (including maintenance) that would take an aircraft out of service for any significant period of time.

• Responsible for becoming familiar with all pertinent information regarding all flights, including, but not limited to NOTAMs, TFRs, weather information, etc.
Completes all flight assignments in a safe and professional manner. The PIC is responsible for ensuring that all crewmembers assigned to their aircraft make safety the first priority in all activities.

Responsible for correcting compliance or safety issues when directed by the director of operations, chief pilot, director of aviation risk and compliance, director of safety, aviation manager, check pilot, or lead pilot.

Responsible for maintaining their qualifications in keeping with the requirements outlined in the CFRs, the Air Methods Training Manual, and this General Operations Manual for their assigned position.

Responsible for protecting Air Methods aircraft from damage and weather. When weather dictates and facilities are available, aircraft will be moved to a hangar.

Reports potentially hazardous meteorological conditions and irregularities of communications or navigation facilities to appropriate ground radio station as soon as practicable.

Submits copies of any new or reissued Airman’s Certificate or Medical Certificate to the aviation manager, who will scan or convert it to a PDF file, and then forward it electronically to the chief pilot. Documents are sent to the region-specific 135FORMSregion@airmethods.com email address listed in the Outlook Address Book.

Supervises loading of passengers, baggage, and fuel, and determines that weight and balance remains within the limitations contained in the aircraft flight manual for all flight operations (Parts 91 and 135).

Will not fly an aircraft with a known deficiency until the deficiency is cleared in writing by maintenance or deferred under the MEL.

Will use all safety equipment issued, furnished, or installed in the aircraft for all flights when operating an Air Methods aircraft. Examples of these would include flight helmets, flight suits, HTAWS, Radar Altimeter and NVGs. NVGs will be mounted on the helmet during night operations and will be flipped up when not required.

When performing a PAIP drill, will contact the Operational Control Center to notify them that it is practice only.

Actively participates in the company’s Safety Management System (SMS) and is familiar with the SMS policies, processes, and procedures.

Performs other duties as assigned.
2 Flight Operations – General

2.1 Operational Control

Air Methods uses a two-tier system of operational control. The first tier consists of managers and directors listed in Operations Specifications Paragraph A006, the Air Methods 411 Pilot computer system, trained flight followers, and the Operational Control Center (OCC). Satellite tracking allows real-time position reports for flight locating requirements.

The 411 Pilot computer system verifies that a pilot meets flight and rest requirements in addition to being properly trained and qualified through a pilot-submitted flight release. Upon validation of pilot requirements, the 411 system issues an electronic flight release valid for the duration of the pilot’s shift.

Air Methods uses off-site communication centers for flight following. Hospital-Based Systems (HBS) are typically located within the geographic area of their bases and are staffed with non-Air Methods employees. The Community-Based System (CBS) is staffed with Air Methods employees and is not typically located in the same geographical location as its bases; it is centralized in Omaha, NE (AirCom).

Communications centers are delegated the authority to flight follow Air Methods aircraft. They are responsible for filing company flight plans before each flight and tracking the aircraft until flight completion. Immediate notification to the OCC is required for any unplanned deviation such as an accident, incident, aircraft damage, injury to a passenger or crew member, an overdue aircraft, or fuel-associated issues related to reported fuel loads versus estimated flight times. Communications centers may also relay hazardous weather information received from the OCC to their flight crews. In addition, the following are examples of possible reasons to elevate concerns to the OCC.

- General safety concerns
- Unplanned fuel stops
- Weather concerns
- Maintenance issues
- Indicators of inadequate crew rest
All communications center personnel who intake flight requests and/or flight follow Air Methods aircraft must be trained according to the Air Methods FAA-approved communications specialist training program. This training program will be administered by the appropriate certificate aviation personnel. Course completion documentation will be retained at the local program level. Additionally, the appropriate certificate aviation personnel shall keep an updated list of the names of all currently trained and utilized communications specialists in the list on the 135 Aviation Ops - Air Methods page (FlightDeck > Operations > 135 Aviation Ops).

The Operational Control Center, located at Air Methods headquarters in Colorado, ensures a sustainable system of operational control through satellite tracking, computerized reporting, and the Flight Management System. Their dual responsibilities include safety of flight and operational control.

Operational control specialists are trained according to Air Methods FAA-approved communications specialist and operational control specialist training programs.

The OCC provides flight monitoring which includes identifying hazards to aircraft in flight and ensuring communications centers submit required flight plans and updated position reports.

The Operational Control Center monitors all computerized flight plans described in this manual. Controls are in place to alert the OCC when a satellite-tracked aircraft departs without a flight plan.

The second tier of operational control consists of the operational control the PIC exercises as the final authority over the operation of the aircraft. The PIC determines whether a flight can be accepted, initiated, conducted, or terminated, and makes tactical and dynamic in-flight decisions in accordance with the CFRs and the Air Methods General Operations Manual and Operations Specifications.

Only a PIC who is a direct employee of Air Methods may exercise this second-tier operational control over any Air Methods flight. In the event the PIC is unsure whether or not a flight assignment can be conducted in accordance with the CFRs or the Air Methods General Operations Manual and Operations Specifications, the PIC will contact a manager listed in paragraph A006 of the Operations Specifications or the Operational Control Center for additional guidance and input.

CFRs require that Air Methods be properly named and identified as the company providing the air transportation and therefore must be included in all printed or advertising matter offered to the public.
This ensures the public is informed of the identification of the FAA-certified and -authorized operator of the aircraft. Aircraft operated on the Air Methods Air Carrier Certificate shall have “Operated by Air Methods” displayed on the aircraft such that it is legible and clearly visible from the outside of the aircraft to a person standing on the ground at any time except during flight. At no time shall any non-certificated entity attempt to exercise operational control, nor hinder in any way, Air Methods’ oversight and/or exercising of operational control of any operations carried out under the Air Methods Certified Air Carrier Certificate (QMLA253U).

Hospitals or other agencies have the right to request flight operations of Air Methods aircraft and may request that Air Methods respond for any mission. A request from a hospital transport call center is an authorization for Air Methods to proceed with evaluating, in accordance with established and authorized procedures specific to Air Methods Air Carrier Certificate, whether a flight can be completed. The hospital transport call center has no authority to override the authority of Air Methods, or the pilot’s authority to refuse any mission request due to weather, maintenance, regulatory limitations, or other flight safety issues. At no time during a response to a medical flight will speed into action criteria be allowed to compromise safety.

All employees, methods, equipment, and facilities used or employed by Air Methods will be under Air Methods operational supervision and control at all times. Air Methods personnel may be requested to, but shall not be required to assist in any patient care or patient handling except to the extent of providing patient transportation.

Pilots, mechanics, and other Air Methods personnel will abide by all Air Methods personnel policies as well as hospital or program rules and policies provided in written form and approved by Air Methods, concerning conduct and appearance. Air Methods shall retain full authority and rights to unilaterally exercise its right to hire, discipline, or remove Air Methods personnel from assignment. Compliance with the Air Methods General Operations Manual and Operations Specifications is mandatory. Failure to adhere to the certificate holder’s directions and instructions may be subject to legal enforcement action by the FAA.

2.2 Accident-Notification Requirements

[135.23]

From the time any person boards the aircraft with the intention to fly until all such persons have disembarked, the occurrence of any event or condition described in this section requires Air Methods to notify the National Transportation Safety Board (NTSB).
Air Methods will contact the NTSB to report an occurrence of any of the following events.

- Flight control system malfunction or failure
- Inability of any required flight crewmember to perform normal flight duties as a result of injury or illness
- Failure of any internal turbine engine component that results in the escape of debris other than out the exhaust path
- In-flight fire
- Aircraft collision in flight
- Damage to property, other than the aircraft, estimated to exceed $25,000 for repair (including materials and labor) or fair market value in the event of total loss, whichever is less
- For large multi-engine aircraft (more than 12,500 pounds maximum certificated takeoff weight):
 - In-flight failure of electrical systems that requires the sustained use of an emergency bus powered by a back-up source, such as a battery, auxiliary power unit, or air-driven generator, to retain flight control or essential instruments
 - In-flight failure of hydraulic systems that results in sustained reliance on the sole remaining hydraulic or mechanical system for movement of flight control surfaces
 - Sustained loss of the power or thrust produced by two or more engines
 - An evacuation of an aircraft in which an emergency egress system is used
- Release of all or a portion of a propeller blade from an aircraft, excluding release caused solely by ground contact
- A complete loss of information, excluding flickering, from more than 50 percent of an aircraft’s cockpit displays known as any of the following:
 - Electronic Flight Instrument System (EFIS) displays
 - Engine Indication and Crew Alerting System (EICAS) displays
– Electronic Centralized Aircraft Monitor (ECAM) displays
– Other displays of this type, which generally include a primary flight display (PFD), primary navigation display (PND), and other integrated displays

• Airborne Collision and Avoidance System (ACAS) resolution advisories issued either:
 – When an aircraft is being operated on an instrument flight rules flight plan and compliance with the advisory is necessary to avert a substantial risk of collision between two or more aircraft
 – To an aircraft operating in class A airspace.

• Damage to helicopter tail or main rotor blades, including ground damage, that requires major repair or replacement of the blades

• Any event in which an operator, when operating an airplane as an air carrier at a public-use airport on land:
 – Lands or departs on a taxiway, incorrect runway, or other area not designed as a runway
 – Experiences a runway incursion that requires the operator or the crew of another aircraft or vehicle to take immediate corrective action to avoid a collision

Actions required Air Methods personnel will notify the Operational Control Center if an aircraft is overdue and believed to have been involved in an accident. The OCC will notify certificate management (DO, DOM, chief pilot), who will then notify the NTSB and the Regional Operations Center (ROC). This will be reported in the most expeditious means available as follows:

• Insofar as possible the report shall contain the following information.
 – Location, time, and date of the accident
 – Number of persons involved
 – Nature and extent of injuries if any
 – Brief description of circumstances surrounding the accident
• When possible, the report should also include the following:
 – Type, nationality, and registration mark of the aircraft
 – Name of the owner and operator of the aircraft
 – Name of the PIC
 – Last point of departure and point of intended landing of the aircraft
 – Position of the aircraft in relation to an easily defined geographical point
 – Number of persons aboard, number of seriously injured, and number of fatalities
 – Nature of the accident, the weather, and the extent of damage
 – A description of any explosives, radioactive materials, or other dangerous articles carried

• The pilot shall discuss the accident only with the assigned law enforcement officer(s) or official(s) from the Federal Aviation Administration or National Transportation Safety Board. If the Press, or anyone else seeks information as to cause, or name of persons involved, refer them to the Vice President of the appropriate division or region

2.3 Adverse- or Cold-Weather Operations
[135.227]

Except for airplane pilots flying airplanes approved for flight into known icing conditions, pilots shall not fly into known icing conditions under VFR or into known or forecast icing conditions under IFR. However, if the current weather reports and briefing information obtained by the PIC indicate that the forecast conditions that would otherwise prohibit the flight will not be encountered because of changed weather conditions since the forecast, the above planning restrictions based on forecast conditions do not apply. The PIC shall not exceed the aircraft limitation as given in the applicable aircraft flight manual.

Any pilot initiating or continuing a flight based on a belief that “forecast conditions that would otherwise prohibit a flight will not be encountered...” must do so with great care. The decision to continue an operation will not be based solely on PIREP information. The decision shall be based on current METAR, AWOS, ASOS, ATIS, or amended forecast reports.
For example, an area of widespread freezing rain that had been previously forecast could be considered to be no longer a threat if METAR, AWOS, ASOS, ATIS, or amended forecast reports indicated the conditions were no longer present along the planned route of flight.

For VFR or IFR in VMC operations, avoiding an area of known icing conditions can be accomplished by flying clear of the conditions that would result in airframe or propeller/rotor blade icing. For example, a forecast or report for icing in clouds or precipitation would allow a VFR flight, if the pilot could operate clear of clouds and precipitation. Avoiding such conditions under IMC would be nearly impossible.

For IFR operations in IMC, forecast icing conditions are known icing conditions. Unless the aircraft being operated is equipped and certified for flight into these conditions, the operation is prohibited.

Helicopter pilots encountering icing conditions enroute, shall comply with the procedures for deteriorating weather conditions, under “Deteriorating Weather Conditions Enroute” on page 51.

Airplane pilots encountering severe icing should request an altitude change, diversion to another destination, or change to a route in order to escape the icing conditions and avoid further encounters.

To protect the medical equipment, supplies, avionics, and other interior furnishings from the cold, or to keep windscreens clear during periods of high humidity, a heater may be placed in a safe location inside the patient cabin. This is only during ground, non-operating conditions.

If the aircraft is equipped with Tanis heaters, they should be used on the ground when the outside air temperature is 40°F or less.

During periods of low temperature operation, the PIC will notify the Communications Center of possible delays in response time due to increased engine and/or transmission warm-up times.

Flight into embedded thunderstorms or squall lines is prohibited.

Engine anti-ice, if installed, will be used in accordance with the aircraft flight manual. Special caution should be used when operating in close proximity to other aircraft, as snow, ice particles, or moisture may be blown onto critical aircraft components; dry snow may melt and refreeze. If there is any doubt that the aircraft is free of contamination, it should be shut down and rechecked or deiced.
Aviation managers shall (if not already available) coordinate with the local FBO and/or airport authority to secure a suitable hangar facility for limited use when deteriorating weather conditions dictate.

If available, consideration should be given to obtaining nearby adequate shelter for the pilot and medical crew for protection from the elements and/or temporary staging of flight operations should conditions warrant due to rapidly changing weather.

If providing temporary quarters for the staging of flight operations, consideration should be given to communications between the crew and their dispatching center, access to weather information systems and NOTAM systems, and access to meal facilities.

The lead pilot shall develop, in writing, the procedures for each base of operations under her charge.

The procedures shall include, as a minimum, the following:

- The on-duty PIC shall retain responsibility for maintaining an accurate and continuous watch on weather conditions and exercise this policy and local procedures when conditions warrant.
- The PIC will inform the clinicians and the communications specialists of any adverse weather and potential relocation of the aircraft, if appropriate.

As a minimum, the aviation manager shall include the following within the local procedures.

- **Wind** – In the case of helicopters, when the forecast wind is to reach or exceed the starting limits of the aircraft (as defined in the limitations section of the appropriate Aircraft Flight Manual) the aircraft will have its main rotor blades and tail rotor blades restrained, and be secured to the deck. For helicopters and fixed-wing, when the forecast wind is to reach 40 knots, the aircraft shall be placed in a hangar.
- **Precipitation** – When the forecast contains freezing rain, hail, or heavy snow, the aircraft will be safely relocated before the occurrence of the forecast conditions.
- **Proximity/Movement** – When a weather system’s movement or proximity of the hazardous weather requires an exercise of caution to protect the aircraft from potential damage, the PIC shall safely relocate the aircraft to a safe location as outlined in the local procedures.
Once the hazardous weather conditions have diminished to the point that there is no foreseeable negative impact on the aircraft, the PIC will retain the responsibility of making the decision to return to the base of operations as appropriate.

2.4 Aircraft Training and Currency

At any time, a pilot may request additional training. This request shall be coordinated through the appropriate management with final approval from the chief pilot. Additional training flights shall be documented appropriately.

If a PIC has not flown a specific make, model, or series aircraft in the last 60 days, they will, as a minimum, accomplish one start and three takeoffs and landings. If a PIC has not flown a specific make, model, or series aircraft in the last 90 days, they will consult with aviation management to determine if any training is needed for the pilot to perform competently and safely in that aircraft. It is essential for the pilot to be knowledgeable of aircraft lighting and proficient with avionics and aircraft systems. This flight shall be coordinated through the pilot’s immediate supervisor.

A PIC who has not flown over a route and into an airport or heliport within the preceding 90 days will:

- Study the appropriate IFR enroute or VFR aeronautical charts.
- Study the destination airport and heliport diagrams, including alternate airports and heliports.
- Study the appropriate IFR approach charts for destination and alternate, if applicable.
2.5 Airport Requirements and Diagrams
[135.229]

Pilots will verify each airport and heliport is adequate for the proposed day or night operation. The following are requirements and procedures for night operations.

- Before takeoff and landing each pilot will determine the wind direction via a lighted wind indicator, communication with ground personnel or other reliable means. For takeoff, the pilot may use their own observation of wind direction.
- Boundary or runway lights must clearly show the limits of the landing and takeoff area.
- Night means the period from the end of evening civil twilight to the beginning of morning civil twilight, as published in the American Air Almanac.
- Table of sunrise, sunset, and civil twilight are available on the web site of the U.S. Naval Observatory (http://aa.usno.navy.mil/data/docs/RS_OneDay.php).

2.6 Carriage of Weapons
[135.119]

Passengers (including patients) shall not carry deadly or dangerous weapons anywhere aboard Air Methods’ aircraft. Local, state, or federal employees (such as law enforcement officers) authorized to carry weapons are permitted to carry those weapons including firearms and tasers. Aerosol products such as pepper spray, mace, bear repellent, or other irritants are never allowed on board Air Methods aircraft.

Air Methods employees shall not carry firearms aboard Air Methods aircraft without written permission from the director of operations.
2.7 Cell Phones and Portable Electronic Devices (PED) Utilization

AMC prohibits use of a personal wireless communication device or laptop computer for non-essential activities while the aircraft is being operated. This prohibition is intended to ensure non-essential activities do not affect flight deck task management or cause a loss of situational awareness during aircraft operations. Additionally, training of flight crew members on the use of portable Electronic Flight Bags (EFBs) should reinforce that when an authorized portable EFB actively displays a software application not covered in the AMC EFB Manual, Section 1.5, Table 1 - Software Used, it is no longer functioning as a portable EFB and is considered to be a personal PED while such applications are being used.

All personal use of a PED is prohibited while the aircraft is being operated regardless of whether or not it is in “airplane mode”.

Cellular telephones and tablet devices may be used during ground operations when the aircraft is not in motion for essential communications or to assist in performance of duties related to an authorized function (e.g., - Obtaining weather information, clearances, EFB operations, Comm Center Coordination, patient care issues, etc.).

All personal electronic devices shall be turned off and stowed for flight, unless the device has a current EMI approval and is authorized for operational use by AMC.

Only approved devices (Electronic Flight Bag, Medical iPad, etc.), in accordance with AMC authorization, may be on and operational (using 'airplane mode') during flight operations.

Requirements for any PED:

- The device has been found acceptable for use in the specific make and model of aircraft through EMI testing in accordance with AMC policies.
- The PIC shall be notified when the device is operational and when it has been shut down.
- The device and any accompanying accessories (case, charger, etc.) may not be installed in any manner (Velcro, clamps, tie wraps, lanyards, etc.) in the aircraft. The device must be “carry on” baggage at all times.
- The PIC has the final authority to require the device to be powered off at any time during the operation of the aircraft.
• If a pilot is performing a checklist and is interrupted by a requirement to use a PED to complete another operationally-essential activity, the pilot will resume completion of checklist items by restarting from the beginning of the checklist section that was interrupted. Extra vigilance is required to avoid skipping critical items.

Personal electronic devices (cell phones, laptops, tablets, etc.) belonging to the medical crew may be turned on at a point 100 feet beyond the circumference of the rotor disc during hot operations. The reverse procedure will apply when approaching the aircraft.

2.8 Conflict of Interest
Pilots shall not engage in business or any other activity to the extent that their performance as a pilot for the company suffers, their availability degrades or the best interest of Air Methods becomes secondary to their outside activity.

2.9 Coordination Training – Pilots and Medical Personnel
This paragraph is applicable to medical personnel who have not been trained per the Air Methods Crewmember Training Curriculum Segment – Annex 22.

Medical personnel will receive annual training on at least the following subjects, per 8900.10.

• Physiological aspects of flight
• Patient loading and unloading
• Safety in and around the aircraft
• Passenger briefing (when appropriate)
• Appropriate in-flight emergency procedures
• Emergency landing procedures
• Emergency evacuation procedures
The aviation manager for the respective program will be responsible for ensuring that the above-listed training has been completed and documented for all medical personnel. Course-completion documentation must be forwarded to the chief pilot. Documents are sent to the region-specific 135FORMSregion@airmethods.com email address using the proper naming convention.

2.10 Daily Flight Log (DFL)/Load Manifest - Helicopters

A Daily Flight Log / Load Manifest – FO-5155 shall be carried in each helicopter for all flights. The fillable form is located on > Flightdeck > Resources > Corporate Forms (AMC).

Use the information in this section to prepare the DFL header and flight-leg details, and to process the form.

Daily Flight Log/Load Manifest - Specifying Header Information

As described below, the DFL header information shall be completed and the DFL signed before the first departure.

- **BASE**
 Specify the base, using either the city and state, or the 411 base identifier.

- **Next Inspection Due**
 This Box is optional. Provided a pilot has a current short term due sheet for the aircraft, there is no need to enter any information.

- **Date, N #, and Model**
 Specify the date, aircraft N-number, and aircraft model, in the corresponding boxes.

- **DFL No.**
 This is a unique, company-assigned number stored in the 411 system and unique to each aircraft. The syntax is as follows:
[a/c SN]-[no_of_flight_days]-[year]

Examples: 001234-024-17 or EC2345-127-17

- The \textit{A/C SN} is a six-character field in which the last four or five digits are the aircraft’s serial number, and one or two leading zeros are placeholders to create a six-character value. There are a few aircraft (less than 30) for which the serial-number designation was duplicated. To differentiate between such aircraft, the first field was edited to replace the leading zeros with an alphabetical designation related to the aircraft type (as shown in the second example above).

- The \textit{no_of_flight_days} is a three-digit value representing one day of flight for that aircraft, regardless of how many segments are flown in a single day. Each calendar year, the value is reset to zero and the value is incremented for each day the aircraft is flown in each year.

- The \textit{year} is expressed in two digits.

If additional pages are needed to capture all flight information for the 24-hour period, use the same DFL number, and label each page (2 of 3, 3 of 3, etc.) above the DFL No. box.

\textbf{Time in Service Brought Fwd} Specify this value, brought forward from the previous DFL, in hours and minutes.

\textbf{Time in Service Today} Specify the total time for the just-finished 24-hour period, shown in hours and minutes. Hobbs meter time is allowed only with the approval of the director of maintenance and the chief pilot, or their respective representatives.

\textbf{Total Time in Service} Specify the sum of the time brought forward and today’s time in service, recorded in hours and minutes. Hobbs meter time is allowed only with the approval of the director of maintenance and the chief pilot, or their respective representatives.
PIC and SIC - Name/Cert#
Print the PIC’s and SIC’s last name, first initial, and pilot certificate number and type in the corresponding boxes (for example, Doe, J 1234567 TP).

Daily Flight Log/Load Manifest – Specifying Flight-Leg Details
For each leg of the flight, enter the following information, with each leg corresponding to a numbered set of data on the DFL.

Leg/Invoice
Complete the following in the numbered Leg/Invoice cell.

- Circle the leg number to indicate engine starts other than maintenance starts. For scene flights, do not circle the leg without a start. For any additional starts for maintenance or canceled requests, note such in the upper margin in a way that clearly indicates the number of additional starts for each engine.
- PAX # – Record the number of passengers for each flight leg.

Pilots
PIC and SIC – Print the last name of each PIC and SIC in the corresponding boxes.

Remarks
Record the total number of multiple landings, such as might occur during training legs.

The pilot’s risk assessment value and elevation of the highest obstacle/terrain (identified during planning required by 14 CFR 135.615) shall be recorded for each leg in the remarks box.

Origin/Dest
Enter the flight origin and destination, shown as coordinates, Navaid, fix, radial/distance, airport identifier (KAPA, E91, 8TE5), or plain language name (scene, Rockford).
Local Time

Enter helicopter takeoff and landing times in local time, 24-hour format. You must record takeoff time just before takeoff. Use the following method to track time in service for maintenance.

- If a helicopter lands at a destination in another time zone, the time entered shall be the local time of the base of departure. Any subsequent leg times shall be noted in the local time of the departure. This method simplifies the recordkeeping of flight/duty times.
- When an aircraft starts a flight before midnight and then completes the last leg of the flight after midnight, all legs for that flight number shall be on the DFL for the day of first departure.

Flight Time

Specify the flight time in hours and minutes.

T/O Weight

Computed basic operating weight at takeoff.

CG Data (Fwd Limit, Actual, Alt Limit)

The entry of CG data (forward limit, actual CG, aft limit) is required only for multi-engine helicopters. This data must also be recorded in the 411 pilot logs. As with the weight data, recording CG data is required only for Part 135 flights.

- The PIC must still determine that takeoff weight and balance is within limitations for all flights (both Part 91 and Part 135); only the requirement to record the data is waived for Part 91 flights.
- To facilitate company situational awareness, the pilot may record time, and weight-and-balance data either immediately on the DFL, or on another source (for example, the Trip Sheet, as described under “Airplane Trip Sheet and Load Manifest” on page 132), and then transfer it to the DFL at a safer time, but no later than the completion of the last leg of the current flight.

MATW

Takeoff and max weights must be entered for all flights, except maintenance, training, ferry, and reposition flights with only Air Methods employees aboard. These exceptions are conducted under Part 91.
For Part 91 flights, “Part 91” is written in the weight-and-balance portion of the DFL for the following flights: maintenance, ferry, training, and repositioning. Also, the purpose of the flight (one of the above categories of exception) is entered in the remarks section.

Signature

PIC signature block.

Daily Flight Log/Load Manifest – Certifying and Processing Logs

- The DFL must be signed. If a second page is needed for a 24-hour period, or a new DFL is opened after midnight, the PIC will sign at the bottom of the new sheet. This constitutes a verification of airworthiness. The PIC is required to sign the current page only once. For example, assume the night pilot closes a DFL after midnight, and then opens a new one and signs it. If that pilot goes home in the morning and then returns to duty for the next night shift (on the same calendar day), the pilot does not need to sign the same page again.

- The pilot must close the DFL and Maintenance Log after midnight for the previous 24-hour period, and create a new DFL and Maintenance Log page.

- The lead pilot and aviation manager audit the DFLs using the Pilot 411 audit process before they are sent to Air Methods (processed). This DFL audit process is conducted every eight days.

- The paper copy of the DFL is carried aboard the helicopter during flights, and a completed copy is kept on file at the base, in a consistent and commonly known location to expedite access by pilots and mechanics, for not less than 30 days.

On the third and eighteenth of each month, the DFLs are scanned or converted to a PDF file and forwarded electronically to the chief pilot using the appropriate 135forms@airmethods.com email address and proper naming convention.

Electronic copies of DFLs are kept at the main office for 30 days after the creation date to satisfy the requirement to keep a duplicate copy of the load manifest.

The DFL satisfies all the requirements of a load manifest if the weight-and-balance section is completed. Each day, the duty pilot must double-check the calculation of times on each DFL to prevent continuation or carryover of a mathematical error in computing airframe and/or engine times in service.
2.11 Deplaning Aircraft After Landing or Enplaning Before Takeoff

Clinicians and passengers shall not depart the aircraft until the pilot verbally notifies them that they have landed and are cleared to deplane. The clinicians or passengers shall inform the pilot before departing the aircraft.

Pilots shall not take off until they have received verbal confirmation from on-board medical crewmembers or other passengers that they are seated, safety belts/shoulder harnesses (as applicable) are fastened, and doors are closed and secured.

2.12 Destination Hazards

An Air Methods pilot will not continue a flight if she becomes aware of a condition that involves an airport, destination, and/or runway that may present a hazard to safe operations. Operations shall be restricted or suspended as necessary until those conditions are corrected.

Pilots may continue toward an airport or destination and/or use a runway when a hazard exists, provided the hazard will no longer exist at the estimated time of arrival.

2.13 Deteriorating Weather Conditions Enroute

If, while conducting VFR operations, deteriorating weather conditions are encountered, one of the following procedures is to be followed.

- Divert to an alternate airport, heliport, or other suitable area where the patients can be transferred to other means of transportation, if applicable.
- Return to the departure point, if practical.
- Land and notify dispatch or hospital personnel of the situation, and make arrangements for care of the patients, if applicable.
- If weather conditions and regulations permit, continue the flight under IFR (not applicable to VFR only operations).
• Execute the IIMC procedure in “Inadvertent Instrument Meteorological Conditions (IIMC) Recovery” on page 78, if the preceding options are not available.

2.14 Documents and Equipment Required in Aircraft

[91.9, 91.203, 91.519, 135.21, 135.83]

All Air Methods aircraft shall carry the following standardized documents on board. It is the PIC’s responsibility to verify that current versions of these documents are on board the aircraft.

- Air Methods *General Operations Manual* (including Operations Specifications)
- Aircraft Maintenance Log
- Aircraft Registration
- Airworthiness Certificate
- Aircraft Status Report retrievable from 411
- Airplane or Rotorcraft Flight Manual
- Appropriate and current aeronautical charts for VFR or IFR operations
- Cockpit Checklist (meeting the requirements of 135.83)
- Daily Flight Log
- Deferred Discrepancy Report
- Emergency Response Plan
- Electronic Flight Bag Manual
- FCC radio station license (when required)
- IIMC procedure, as applicable
- Logbook or iPad Removed sign
- Minimum Equipment List – Nonessential Equipment and Furnishings (if applicable)
- *Operations Hazardous Materials Manual*
- Part 133 Rotorcraft External Load Operations (if applicable)
• Passenger briefing card, one per seat, at a location convenient for the use of each passenger. The passenger briefing cards shall be appropriate for the aircraft configuration.

• Pilots Maintenance and Servicing Procedures

• Weight-and-balance information

In addition to applicable CFRs, aircraft shall be equipped with the following:

• Assigned and updated aircraft iPad.

• Flashlight with two D-cell batteries or equivalent.

• An operable radar altimeter is required for all night-flight operations. This requirement does not apply to airplanes.

• A slewable searchlight, or equivalent, for helicopter night-scene flights.

• Avionics equipment databases. Databases shall be kept current in aircraft operated under instrument flight rules (IFR). If a database is expired in an IFR-operated aircraft, alternate equipment approved for IFR operations and appropriate for the flight must be installed. Aircraft operated under visual flight rules (VFR) may maintain current avionics databases; however, they are not required by this manual to be current for VFR operations unless required by CFR or aircraft flight manual. For more information, see “Overwater and Extended Overwater Operations” on page 84.

• For overwater flights:
 – Equipped with floats; this applies to single-engine aircraft.
 – Approved life preserver for each occupant.
 – At least one pyrotechnic signaling device.

2.15 Do-Not-Fly Indicators

All Air Methods aircraft will have both a red and a yellow cyclic/control yoke warning cover (red and yellow socks, red and yellow golf club covers, etc.) located in the cockpit in a location accessible to the pilot or mechanic. All Air Methods flight crews (medical personnel) will be informed about the purpose of these cyclic/control yoke warning covers, as well as the Logbook/iPad Removed sign.
Designating an aircraft as out of service

Before rendering an aircraft out of service, the mechanic or pilot will install a red cyclic/control yoke warning cover over the pilot’s cyclic stick or control yoke as applicable. The red cover can be installed by a pilot or mechanic, but will be removed by a mechanic only after the aircraft has been returned to service, except as provided in the following paragraph.

Pilots who perform a function that returns the aircraft to an airworthy condition are authorized to remove the red cover after returning the aircraft to an airworthy condition. For example, a pilot who is trained and authorized to unfold the rotor blades may remove the red cover. This allowance is only for functions that pilots have been trained and authorized to perform.

Designating an aircraft as restrained from flight

Pilots or mechanics will use a yellow cyclic/control yoke warning cover anytime the aircraft is restrained from flight (such as when tie-downs are in place, a ground/shore line power is connected, required documentation is removed from the aircraft, etc.).

A laminated card will be provided for the aircraft; the card will be placed on the pilot seat any time either the aircraft logbook or an iPad is removed from the aircraft. When this card is on the seat, the aircraft will be considered to be in Do Not Fly status until both the logbook and the iPad are returned. This manual includes a replica of the required notice; in the event that a full-size laminated sign is missing and a replacement cannot be immediately located, the sign can be printed and used temporarily. (See “Do Not Fly – Logbook and/or iPad Removed”)

2.16 Dropping Objects

Air Methods pilots will not allow objects to be dropped from their aircraft unless the PIC has determined that a hazard will not exist for persons on the ground. Requests for public relations event support in which objects might be dropped will be approved by the chief pilot or his designee before the event.
2.17 Electronic Flight Bag (EFB)

2.17.1 Introduction
Air Methods Corporation is authorized for Ops Specs A061 which allows Electronic Flight Bag operations to be used in all phases of flight regimes.

This section contains specific procedures related to the Electronic Flight Bag (EFB) Operations. For detailed guidance on EFB operations pilots shall refer to the Air Methods’ EFB Manual which can be found on Flightdeck at: Resources > Corporate Publications > Flight Operations Publications > Electronic Flight Bag.

EFB operations shall be conducted in accordance with the procedures listed here and in the EFB Manual, as well as Air Methods’ Operations Specifications.

The Electronic Flight Bag (EFB) is an electronic display system intended primarily for cockpit or cabin use. EFB devices can display a variety of aviation data (e.g., checklists, navigation charts), or perform basic calculations (e.g., performance data, fuel calculations). The scope of the EFB system functionality may also include various other hosted databases and applications.

Pilots using the EFB must have completed training in accordance with the Air Methods’ EFB Manual and adhere to all procedures, restrictions, and limitations.

2.17.2 EFB Operations
ALL EFBs must be checked at the beginning of the pilot's shift to confirm there is a full charge and no EFB will be used to commence any flight segment with less than a 30% charge. Each pilot must ensure that the battery is plugged in to be recharged after the completion of each trip. The EFB is re-charged using the manufactures charging cable. The AC power outlet on the aircraft may be used to charge an EFB in flight in order to maintain a charge of at least 40% but not to exceed 100%. Overcharging could lead to a fire.

During critical phases of flight, ForeFlight and other Type B software listed in the Air Methods’ EFB Manual will be the only applications permitted to be used with the EFB.

EFBs shall be set to the Airplane mode during flight operations.
Software depicting weather via a data link may only be used for strategic flight planning and not for actual navigation.

All hardware associated with the iPad EFB must be kept up to date and maintained to the original manufacturer’s specifications.

The EFB will be secured by use of a kneeboard-type device. The securing device must be positioned in a way that does not obstruct the full movement of flight controls, block field of vision, obstruct emergency egress path, and provides EFB security during flight. When the EFB is not in use, it must be secured to the pilot’s leg, stowed in secure storage area or flight bag.

2.17.3 Normal Procedures

During pre-flight checks (see Section 2.17.8 below), the pilot will ensure that the EFB is adequately charged with current operating system updates, the current data base updates, and current company documents.

Pilots shall verify weight and balance info used on the EFB matches the current numbers in the Aircraft Flight Manual.

Updating instructions and additional information is listed in the Air Methods’ EFB Manual.

WARNING OPERATING THE EFB OTHER THAN IN AIRPLANE MODE IS PROHIBITED INFLIGHT.

2.17.4 Non-Normal Procedures

In Flight EFB Failure

In the event that one EFB fails in flight, the pilot shall rely on the use of the secondary EFB or paper charts (as applicable) for enroute navigation and approach phases of flight. In the event both EFBs fail in flight, the crew is expected to use other cockpit resources and ATC to complete the flight.
On the Ground EFB Failure

When a pilot discovers that an iPad EFB that is not functional or available for flight, they shall contact their supervisor by telephone and inform them of the failure. A pilot may operate using faxed/emailed charts until a replacement iPad EFB is obtained. A pilot may continue to use a company iPad EFB for flight operations provided the pilot has the necessary paper charts available for the flight. Any company iPad EFB may be used.

2.17.5 Training

EFB use is not permitted until pilots have completed initial EFB training as outlined in the Air Methods’ EFB Manual.

2.17.6 Safety

The iPad EFB uses a Lithium/Polymer Battery. Although extremely unlikely, the risk of a thermal runaway and fire is possible. If you notice your iPad EFB and/or battery are extremely hot conduct the following:

- Immediately remove external power source (external battery, if applicable.)
- Shut Down the iPad.
- If the iPad EFB continues to overheat, remove the iPad EFB from the flight deck.

2.17.7 Discrepancy Reporting

Should the pilot experience any unintended or abnormal use of the EFBs, problems or failures or any electronic interference with aircraft or other systems, or any other type of unusual event shall be reported verbally (if immediate action needed) and in writing. Documentation of event shall be done via the EFB Discrepancy Form – 5713. Fillable form is available on Flightdeck > Resources > Corporate Publications > Operations Publications > Electronic Flight Bag.

These forms will be made available electronically and shall be emailed to EFBsupport@airmethods.com.
NOTE This will be a daily check for the pilot to accomplish at the beginning of each shift to ensure the unit is working properly and all information is up to date.

Pilots should remember that the safe operation of the aircraft is the most important priority on any flight. Distraction and time spent inside the cockpit are real hazards that are present anytime new technology is introduced in an aircraft. Pilots shall make every effort to always fly the aircraft first. If the EFB is creating a hazardous distraction the pilot shall stow the EFB for the remainder of the flight and report the issues surrounding the event through an email to EFBsupport@airmethods.com.
2.18 Emergency Notification

[135.19]

In the event the certificate holder or PIC who, under emergency authority, deviates from any Code of Federal Regulation shall, upon the safe completion of the flight, write a complete report of the aircraft operation involved. He will include a description of the deviation taken and the reasons for it. He will immediately send it to the director of operations and/or chief pilot, who will forward it to the FAA no later than 10 business days after the day of the deviation.

2.19 Emergency Operations

[135.19, 135.23, 135.123]

During any aircraft emergency, the pilot’s first responsibility is to fly the aircraft. During an emergency, the pilot will comply with the emergency procedures set forth in the aircraft flight manual, Air Methods-approved checklist, and any other appropriate action as required. All aircraft operations shall be conducted in accordance with the provisions of this manual, company policy, and the CFRs. As medical flights are planned flights, patient condition will not be a valid consideration for use of 14 CFR 135.19 emergency deviation authority. This does not preclude the appropriate use of 14 CFR 135.19 for other valid emergencies to the extent required to meet the emergency.

When on board and necessary, the trained medical personnel will assist the pilot with briefing conscious and coherent patients/passengers; securing of equipment, bags, and loose items; fighting on board fires as directed by the PIC; and evacuating patients/passengers.

All Air Methods pilots and medical crewmembers will have annual training on emergency evacuation procedures. It will be the responsibility of the pilot and medical crewmembers to assist passengers and/or patients in emergency evacuation. These duties will include, but not be limited to the following:

- Opening of main exit doors, if possible
- Assisting passengers/patients to disembark
- Leading passengers/patients to a safe area
- Notifying proper authorities and requesting aid
- Giving medical attention, if necessary
If an emergency occurs on the ground, or once an aircraft is returned to the surface, the pilot will evacuate the aircraft via any normal or emergency exit. After successfully evacuating herself, the pilot will assist in passenger evacuation. It will be the duty of both the pilot and medical crewmembers to assist in the evacuation of any and/or all handicapped persons or those needing assistance that are aboard the aircraft.

2.20 Emergency Procedures – Performing Practice
Emergency procedures, including autorotation, shall not be performed except under the supervision of a company instructor or check pilot during training or flight checks. This does not preclude normal aircraft testing included in a post-maintenance flight.

2.21 Flight Following
[135.23, 135.79]
Air Methods has established the following procedures for VFR flight following and locating requirements for all flights. This includes training, maintenance, reposition, and ferry flights.

- All flights require an Air Methods or FAA flight plan.
- The HBS/ADM communications specialist will enter their flight plans for all known legs of the flight into the Air Methods approved flight-tracking system before PFRA approval.
- AirCom communications specialists will enter flight plans for all legs of the flight into the Air Methods-approved flight-tracking system before PRFA approval.
- All flight plan information, including departure and arrival waypoints, takeoff and landing times, position reports, and flight plan changes, will be entered.
- When an aircraft takes off for an assigned flight, the pilot or her designee will report the following to the communications specialist.
 - Number of people on board
 - Fuel load remaining in flight time (hours and minutes)
 - Destination
 - ETA
Flight Operations – General

- If the aircraft is equipped with an operable GPS flight-tracking system, such as Outerlink or Sky Connect, and the flight is continuously tracked by the Communications Center, position reports are not required.

- When the approved flight-tracking system is inoperative, the pilot will report her present position every 15 minutes, expressed in latitude and longitude, or by ground reference and time remaining to the destination. Each position report shall be entered into the Air Methods approved flight-tracking system as appropriate. If the pilot fails to call within 15 minutes, the communications specialist will call the aircraft and request a current position report.

- When landing is assured at the intended destination, the pilot will notify the Communications Center by radio (or telephone after landing) of the landing time.

- Upon mission completion, the flight will be “Completed” in the appropriate flight-tracking system.

NOTE If the approved flight-tracking system is inaccessible, the communications specialist will call the Air Methods Operational Control Center to relay the flight information. The number for the Operational Control Center is (866)676-3442.

If the pilot has to land for any unforeseen reason before reaching the intended destination, such as a malfunction or weather-related issue, she will call the communication center either by radio or telephone.

The pilot shall give her approximate location, reason for landing, estimated takeoff time (if possible), and a revised ETA to the hospital or scene.

If, for any reason, the pilot knows she will be out of radio contact for an extended period of time, she will contact the communication center to report the reason and expected time of delay. If the flight takes the aircraft out of the communication center radio range, then the pilot will give position reports to another facility (hospital, airport unicom, air medical program communication center, etc.) that is within radio range, and request the position report be relayed to the appropriate communication center by telephone.

After 30 minutes on a scene, or 45 minutes for an inter-hospital flight, if the crew has not contacted the communication center with a takeoff time and an ETA back to the receiving facility, the communications specialist shall attempt to ascertain the status of the flight. The pilot will follow the above as appropriate for the return trip.
Air Methods aircraft on an IFR flight plan will file an IFR flight plan with the appropriate ATC agency. Before takeoff and after landing, the PIC will contact the appropriate communication center to advise of any updated information concerning the flight. This information will be entered by the communications specialist in the Air Methods approved flight-tracking system.

2.22 Flight-Time Limitations and Rest Requirements for Unscheduled One- and Two-Pilot Crews

[135.1, 135.63, 135.263, 135.267]

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty period</td>
<td>The period of elapsed time between reporting for an assignment involving flight time and release from that assignment by the certificate holder.</td>
</tr>
<tr>
<td>Scheduled duty period</td>
<td>Twelve scheduled consecutive hours that may be continued to 14 hours.</td>
</tr>
<tr>
<td>Duty assignment</td>
<td>A revenue flight which may contain multiple legs planned to be completed during the scheduled duty period.</td>
</tr>
</tbody>
</table>
| **Helicopter air ambulance operation (HAAO)** | A flight or sequence of flights with a patient, donor organ or human tissue, or medical personnel on board for the purpose of medical transportation, conducted by a Part 135 certificate holder authorized by the administrator to conduct HAA operations. An HAA operation also includes, but is not limited to the following:

- Flights conducted to position the helicopter at the site at which a patient or donor organ will be picked up.
- Flights conducted to reposition the helicopter after completing the patient or donor organ transport, such as refueling before returning to base.
- Flights initiated for the transport of a patient or donor organ that are terminated due to weather or other reasons (refer to 135.601)
Planned completion time (completed) The realistically planned completion time of a duty assignment considering forecast weather, aircraft reconfiguration, average on-scene or bedside time, and any anticipated delays.

Rest period Ten consecutive hours of rest, known in advance and free from all restraint.

Tail-end repositioning flight A non-revenue repositioning flight conducted at the completion of a duty assignment for the purpose of repositioning the aircraft.

Pilots and certificate managers are responsible for ensuring compliance with the flight-time limitations and rest requirements.

Pilots will report for duty with the appropriate rest and be capable of performing their assigned flight crewmember duties. Any pilot who becomes medically or physically unfit for duty shall vocally notify the appropriate aviation manager, self-ground, and comply with the requirements of 14 CFR 61.53.

As a Part 135 certificate holder, Air Methods conducts unscheduled passenger operations pursuant to 14 CFR 135.267(d). Air Methods does not conduct operations pursuant to 14 CFR 135.271. A pilot may be assigned duty only if he has had 10 consecutive hours of rest before the duty period. Each pilot must receive 10 consecutive hours of rest in the 24-hour period before the expected completion time of the assignment.

Duty periods and flight time shall be captured in the Air Methods Pilot 411 system, which automatically generates the Duty Time Summary Report. This information shall be printed, verified, and signed by the pilot, and then transmitted to the pilot records department by the tenth of the following month.

A pilot who has received approval from the chief pilot or designee to perform non-Air Methods commercial flying will ensure that those activities do not interfere with the ability to perform their assigned AMC duties. Air Methods pilots are not authorized to fly for competitors.
2.22.1 Effect of Delays

If the original planned completion time of the duty assignment is upset for reasons beyond the control of the certificate holder, the flight may nevertheless be conducted, even though the duty period may continue beyond 14 hours in a 24-hour duty period.

The key to the applicability of 14 CFR 135.267(d) is in the final phrase, “planned completion time of the assignment.” This potential exemption is not a recommendation to exceed a scheduled duty period.

Delays due to Air Traffic Control, mechanical problems, adverse weather, and late arriving passengers could constitute circumstances that are beyond the control of the certificate holder that would permit the flight crew to finish its duty day after the originally planned completion time.

The PIC will notify his aviation manager or her designee as soon as practicable when it becomes apparent the planned duty period will be exceeded. The aviation manager will discuss the situation with the pilot, consider alternative options, and evaluate the effects of fatigue, and together they will determine the appropriate course of action which could include requesting another aircraft to assist.

In any event, the Operational Control Center will be notified by the pilot or aviation manager of the continued duty period and the course of action.

If a duty period exceeds 14 hours, it is automatically captured in the Pilot 411 system. The remarks section that appears on the **Duty-Out** screen in Pilot 411 shall contain an explanation. There is no requirement to submit an AIDMOR/ASAP for the sole purpose of reporting a continued duty day. The pilot shall not be allowed to return to duty until he has had a minimum of 10 consecutive hours of uninterrupted rest.

No certificate holder may assign any flight crewmember, and no flight crewmember may accept an assignment, for flight time as a member of a one- or two-pilot crew if that crewmember’s total flight time in all commercial flying will exceed the following:

- Five hundred hours in any calendar quarter
- Eight hundred hours in any two consecutive calendar quarters
- Four hundred hours in any calendar year

Pilots will not intentionally exceed the one- or two-pilot crew flight-time limits of 8 or 10 hours, respectively. If the 8- or 10-hour flight-time limit is exceeded during a regularly scheduled duty period, compensatory rest, per 135.267(e), must be taken. Each Air Methods pilot shall have at least 13 rest periods, consisting of 24 consecutive hours, during each calendar quarter.
2.23 Fueling
[135.23]

For guidance about aircraft refueling, refer to the Air Methods Aviation Fuel Management Program Manual. Medical personnel who have completed the Air Methods Refueling Training can perform the “trained medical person” functions in this section; they may also refuel the aircraft if the engines are shut down.

It shall be the responsibility of the PIC to check the amount of fuel and correlate this amount with the total fuel as reported by the servicing agent and as indicated by the fuel gauges and by a visual tank check when tank openings can be readily reached. Additionally, she must confirm, by color and tank marking, that the fuel is of the correct grade and obtain a fuel sample as outlined in the Aircraft Flight Manual.

When receiving fuel services away from home, the PIC will supervise the refueling process and will verify that the proper grade of fuel is being dispensed for the aircraft. Pilots should provide extra vigilance at facilities where both turbine (jet) fuel and gasoline are dispensed to ensure the appropriate fuel is used.

Fuel sources that are not audited by Air Methods personnel require an appearance test to ensure fuel is clear, bright, and free of contaminants. Appearance test options and procedures are described in the Aviation Fuel Management Program Manual.

Pilots will document the completion of the Appearance Test (AT) in the remarks section of the Daily Flight Log / Load Manifest – FO-5155 or Airplane Trip Sheet – FO-5211 (as applicable).

Example: “AT complete, initials”

2.23.1 Safety Precautions for All Refueling
The flow of jet fuel creates more static electricity than other types of fuel; therefore, extreme caution must be used during this potentially dangerous operation.
During the refueling of an aircraft, the concentration of fuel vapor in the area surrounding the aircraft varies with the wind velocity and the rate of fueling. These invisible vapors are too often ignored, are heavier than air, and tend to settle and spread.

WARNING When fuel is pumped into the aircraft tanks, it displaces an equal volume of vapor, which is discharged into the atmosphere. If sufficient vapor accumulates so that an odor is present, conditions are good for a fire and explosion. Most importantly, concentrations are dangerously increased by fuel spills, which are the greatest hazard. Any source of ignition, such as a static discharge, lighting of a cigarette, or the pilot light of a gas heater nearby, can cause a fire or explosion.

The PIC will protect the aircraft and persons by observing the following procedures to minimize fuel contamination, protect against fire, prevent spillage, and reduce other potential hazards.

- No smoking and no flames or fires shall be permitted within 50 feet of an aircraft while refueling.
- In the event of spillage, all pumps and electrical equipment will be shut down. Refueling may be restarted after spillage has been removed.
- Line personnel will remove any loose objects from their person that could possibly enter a fuel- or oil-service port.
- A fire extinguisher will be available.
- The aircraft will be bonded to its fueling source for all refueling operations with engines shut down, except where authorized under “Rapid Refueling with Rotors Turning” on page 68
- Strobe lights shall be turned off and radio transmissions restricted until fueling is completed.
- The refueling unit/truck will remain outside the rotor arc.
- Refueling operations shall not be conducted during periods of active thunderstorms and detected lightning, within 5 NM of the fueling operations.
- Aircraft maintenance is not allowed during refueling, or servicing of oxygen, LOX, batteries, or medical equipment.
- Aircraft ground-power units shall be located as far away from the fueling point as practicable and neither connected nor disconnected during fueling.
- Electric tools, such as drills or buffers, shall not be used in or near the aircraft during refueling.
• Aircraft radios, portable radios, or PEDs shall not be operated in the vicinity of any aircraft refueling operation.

• Use caution in removing the fuel tank cap, and place the tank cap where it will not get contaminated.

• Make sure the nozzle is in contact with the filler neck to ensure proper bonding.

• Do not block the nozzle trigger in the open position unless the nozzle is of the type that shuts off automatically, and then only use the system provided on the nozzle handle.

• Never leave the nozzle unattended.

• Make frequent visual checks of the amount of fuel in the tank, and take extreme care to prevent spills and over-filling of the tanks.

• Upon completion of the refueling, close the filler cap properly, disconnect all bonding and bonding cables, and remove the hose and cables from the vicinity of the aircraft.

• If an aircraft fuel apparatus or spilled fuel catches fire, engage all fuel shut-offs. Notify the Fire Department immediately. If possible and without endangering yourself or others, fight the fire with all means available.

2.23.2 Safety Precautions for Cold Refueling with Patient Aboard

The safety precautions listed below must be followed when a patient is aboard during cold refueling. These procedures are in addition to the precautions specified under “Safety Precautions for All Refueling” on page 65.

• The PIC will conduct a safety briefing before commencing fueling of the aircraft, to include the processes described under this topic.

• A trained medical person with a fire extinguisher, will remain on board the aircraft with the patient. The patient will be prepared for rapid evacuation.

• The second trained medical person will position himself, with a fire extinguisher (if available) in a position that will allow monitoring of the refueling operation and the on-board attendant simultaneously, so as to be able to coordinate emergency evacuation or firefighting assistance as necessary.
2.23.3 Rapid Refueling with Rotors Turning

2.23.3.1 Rapid Refueling with Rotors Turning – without Medical Personnel or Passengers Aboard

- The aircraft will be bonded to its fueling source.
- Aircraft power will be reduced to ground idle or a reduced power setting as specified in the Rotorcraft Flight Manual, and controls positively locked or friction applied to prevent movement. Force trim shall be on (if installed), autopilot turned off (if installed), and the rotor disc level.
- The pilot may go beyond the rotor arc of the aircraft to retrieve the fuel nozzle or bonding cables, or to secure those items.
- A fire extinguisher will be accessible near the fueling port.
- If an aircraft fuel apparatus or spilled fuel catches fire, engage all fuel shut-offs, and shut down the aircraft if possible. Notify the Fire Department immediately. If possible and without endangering self or others, fight the fire with all means available.

2.23.3.2 Rapid Refueling with Rotors Turning – with Medical Personnel Aboard

- The aircraft will be bonded to its fueling source.
- Aircraft power will be reduced to ground idle or a reduced power setting as specified in the Aircraft Flight Manual, controls positively locked or friction applied to prevent movement. Force trim shall be on (if installed), autopilot turned off (if installed), and the rotor disc level.
- The pilot may go 30 feet beyond the rotor arc of the aircraft to retrieve the fuel nozzle or bonding cables, or to secure those items.
- All medical personnel will exit the aircraft. One trained medical person will position herself, with a fire extinguisher in a position that will allow monitoring of the refueling operation, to lend firefighting assistance as necessary. The other trained medical person will act as tail rotor guard.
- A fire extinguisher will be accessible near fueling port.
- The fuel truck will be placed a minimum of 30 feet beyond the rotor arc.
If an aircraft fuel apparatus or spilled fuel catches fire, engage all fuel shut-offs, and shut down the aircraft if possible. Notify the Fire Department immediately. If possible and without endangering self or others, fight the fire with all means available.

2.23.3.3 Rapid Refueling with Rotors Turning – with Medical Personnel and Patient Aboard

- The aircraft will be bonded to its fueling source.
- The PIC will conduct a safety briefing before commencing fueling of the aircraft, to include the processes described under this topic.
- The trained medical personnel will exit the helicopter and post in a position that will allow them to guard the tail rotor and monitor the pilot.
- Engine/rotor RPM shall be set to the lowest appropriate setting, the force trim shall be on (if installed), the autopilot shall be turned off (if installed), and the rotor disc shall be level.
- A trained medical person with a fire extinguisher, will remain on board the aircraft with the patient. The patient will be prepared for rapid evacuation.
- The second trained medical person will position himself, with a fire extinguisher (if available) in a position that will allow monitoring of the refueling operation and the on-board attendant simultaneously, so as to be able to coordinate emergency evacuation and/or firefighting assistance as necessary.
- The fuel truck will be placed a minimum of 30 feet beyond the rotor arc.
- If an aircraft fuel apparatus or spilled fuel catches fire, engage all fuel shut-offs, shut down, and evacuate the aircraft. Notify the Fire Department immediately. If possible and without endangering self or others, fight the fire with all means available.
2.24 Fuel Sumping – All Aircraft

At a minimum, each aircraft at a base will have all fuel sumps drained once per shift, at the start of each shift. Sump draining may be done by either the pilot or mechanic, but the pilot retains responsibility for completion of the procedure.

The draining method must be as specified in the RFM/AFM/POH. If the RFM/AFM/POH specifies more frequent draining of sumps, the higher frequency will be observed. The two most recent fuel samples will be kept in glass containers and in an appropriate location at the base. If fuel contamination or improper fuel is suspected, the OCC must be contacted.

2.25 Hazards Map – Local Area

All assigned pilots are responsible for the development and maintenance of the base hazards map. The map shall be reviewed and updated monthly to ensure posted hazards are still current.

NOTE Fixed-wing programs are not required to develop a local-area hazards map.

The intent of the hazards map is to flag items that are not already shown on the map and, at the discretion of the base lead pilot, to indicate unique features including those already on the map. The existence, maintenance, and periodic review of the map will be confirmed during staff visits and base audits. For more information about the hazard map, refer to Air Methods > FlightDeck > Operations > 135 Aviation Ops > Pilots Reference Library.

2.26 Instrument Flight Rules

Approved sources of weather for IFR operations are listed in Paragraph A010 of the Operations Specifications. When an approved weather source is unavailable, 135.611 allows a helicopter pilot to use an approved weather reporting source if located within 15 NM from the destination landing area or use the area forecast if no such weather reporting source is available. Air Methods pilots will use an approved weather reporting source located at the destination landing or departing area, if available, or will use those approved weather reporting sources within 15 NM only if those sources are located in an area that is meteorologically representative of the landing or departing area as determined by the pilot.
Furthermore, when using an area forecast, all available pertinent weather information such as PIREPs, METARs, and TAFs located along the route of flight and in the vicinity of the destination or departure area and the HEMS tool will be reviewed to support the area forecast. If any available pertinent weather information does not support a go decision, the pilot will not accept the flight based on the area forecast. The HEMS tool may only be used for a no-go decision.

NOTE 14 CFR 135.611 requires that the pilot select an alternate airport that meets the requirements of 135.221 and 135.223. This alternate must also have an approved weather reporting source in accordance with 135.213.

2.26.1 IFR Operations at Locations without Weather Reporting

For a flight to be conducted under 14 CFR 135.611, the additional weather briefing and flight-monitoring actions described below must be taken.

Additional weather briefing requirements for flights under 14 CFR 135.611 include all of the following:

- The pilot will use information obtained from the National Weather Service to determine that there is no reasonable possibility of thunderstorms or other potentially hazardous weather conditions expected to exist at the destination, alternate, or along the route to be flown for the period of time planned for the flight.
- The following aviation weather products must be reviewed in making the weather determination: AIRMETs, SIGMETs, Convective SIGMETs, METARs, region-specific NEXRAD, NOTAMs, PIREPs, and TAFs.
- No IFR operation under 14 CFR 135.611 will be released if current weather reports or forecasts indicate the potential for thunderstorms or other potentially hazardous weather to exist at the destination, alternate, or along the route of flight for the period of time planned for the flight. If such potential exists, the pilot must refuse the flight.
2.26.2 **Flight Monitoring by the Operational Control Center**

Once the flight becomes active, the Air Methods Operational Control Center uses specialized software, that automatically monitors the flight plan, current position, and destination of all active flights. The flight tracking system automatically alerts the operational control specialist, by text and with visual alerts on the tracking display, when there is hazardous weather within 30 NM of an aircraft or a point on the route of flight.

The Air Methods Operational Control Center monitors all flights for unforecasted weather and provides that information to the pilot by any of the following:

- Relay through the Communications Center to the pilot
- Contacting the pilot directly via satellite phone
- Contacting the pilot directly over our Internet-based voice communications system

The Operational Control Center provides general advice such as, “There are thunderstorms to your west; recommend you divert to the east.”

If pre-flight risk analysis indicates that a helicopter air ambulance IFR operation is unable to comply with these additional GOM 14 CFR 135.611 planning requirements, the flight will be assessed a risk level of No Fly.

2.26.3 **IFR Alternate Requirements and Fuel Requirements**

[135.209]

IFR alternate requirements and fuel requirements shall adhere to the CFRs and appropriate Operations Specifications Paragraphs.

If an alternate is required, the following alternate selection criteria apply:

- **Airplanes** – Reference Operations Specifications Paragraph C055
- **Helicopters** – Reference Operations Specifications Paragraph H105
2.26.4 IFR and Over-the-Top Limitations

IFR and over-the-top operations shall be conducted per 14 CFR 135.181, 135.211, and Operations Specifications Paragraph A046, as appropriate.

2.26.5 IFR Departures

No pilot may depart on an IFR or a VFR-over-the-top flight unless the latest weather reports or forecasts, or any combination thereof, indicate that the weather conditions at the estimated time of arrival at the airport or heliport of intended landing will be equal to or greater than the ceiling (expressed as HAT or HAA) and landing minimum (visibility), specified in the instrument approach procedure to be flown.

Helicopter instrument departures from hospital heliports or helipads are prohibited unless specifically authorized by the Operations Specifications.

Lower than standard takeoff minimums may be published in the Operations Specifications Paragraphs C057, C079, and H116.

In accordance with Operations Specifications Paragraph C057, pilots of multi-engine airplanes may takeoff from an airport where straight-in approaches are authorized in weather conditions less than standard IFR takeoff minimums if an approved weather source indicates the weather is at or above the lowest straight-in landing minimums. Such operations will be undertaken only if the wind direction and velocity at the time of takeoff allow a landing on the runway served by the straight-in instrument approach and the facilities serving that approach are operational.

In accordance with Operations Specifications Paragraph H116 helicopter crews consisting of at least two pilots may takeoff with less than standard visibility, provided they meet the requirements and visibility minimums listed in that paragraph.

Controlled airspace, to the surface, is required for the departure airport or heliport, unless otherwise authorized in the Operations Specifications. IFR departure requirements for Class G airspace can be found in Operations Specifications Parts C and H.
2.26.6 IFR Destination Requirements

[135.225]

Instrument approaches require controlled airspace to the surface of the destination airport or heliport, unless otherwise authorized in the Operations Specifications. IFR arrival requirements for Class G airspace can be found in Operations Specifications Parts C and H.

Air Methods pilots shall use an instrument approach procedure prescribed by 14 CFR Part 97 or authorized by Operations Specifications Paragraph H122.

Pilots shall comply with the highest DH or MDA for the procedure, PIC qualifications, or aircraft equipment as appropriate. Pilots shall not operate below the MDA or continue an approach below DH unless in a position to make a normal descent to the intended runway, the flight visibility is not less than prescribed and the visual cues 14 CFR 91.175 are visible.

Helicopter pilots will not commence an instrument approach, or begin the final approach segment of an approach, to an airport unless that airport has an approved source of weather, unless authorized by 14 CFR 135.611.

Airplane pilots when conducting IFR operations under 14 CFR Part 91 (training, maintenance flights or positioning flights with only Air Methods personnel aboard) may begin any instrument approach published under 14 CFR Part 97.

Additionally, the latest weather report must indicate the weather is at or above the authorized IFR landing minimums per Operations Specifications Paragraphs C053, C074, C075, H103, and H117.

Pilots may continue an approach if, after commencing the final approach segment, a later weather report indicates the weather is now below minimums provided the aircraft is:

- On an ILS final approach and past the final approach fix
- On an ASR or PAR approach and they have been turned over to the final approach controller
- On VOR, NDB, or similar approach and the aircraft has passed the final approach fix, or if a final approach fix is not specified, procedure turn inbound and within the distance prescribed for that approach

In the above situation, the pilot may continue the approach to the missed approach point. Upon arriving at the MDA, the pilot may land if she finds the actual weather to be at or above the prescribed landing minimums.
When being radar vectored to an approach, and when cleared for an approach, pilots will comply with Part 91.177 minimum altitude and maintain the last assigned altitude until established on a segment of a published route or the approach.

Pilots will not execute a procedure turn unless authorized to do so by ATC when being radar vectored to final approach, from a timed holding pattern, or when an instrument approach procedure specifies “NoPT.”

Once cleared for an instrument approach procedure, pilots will comply with all procedural tracks and/or ATC instructions unless adverse weather, such as moderate/severe icing or thunderstorms, is encountered.

Unless, at the time an instrument approach is initiated, the reported weather is better than a 1,000-foot ceiling and 5 SM visibility, pilots will remain on an IFR clearance until in a position to commence a normal approach and landing. It should be understood that being in a position to make a normal approach and landing does not include any unusual maneuvering and the approach will remain stabilized.

Pilots may execute an instrument approach to one airport or heliport, and proceed visually to another airport or heliport not served by an instrument approach. However, all cloud clearances required by 14 CFR 91.155, minimum altitude requirements for 14 CFRs 91.119 and 135.203, and in uncontrolled airspace the weather minimums in 14 CFR 135.609 must be adhered to. A VFR flight plan will be filed or flight locating as outlined in this manual will be used.

Contact approaches are not authorized.

PICs of turbine-powered airplanes that do not possess 100 hours in type will increase landing minimums by 100 feet and 1/2 SM respectively. However, adjusted minimums need not exceed the ceiling and visibility required for that airport to be used as an alternate.
2.26.7 IFR Destination Requirements for Eligible On-Demand Operations

[135.4, 135.95, 135.225, 135.243]

An eligible on-demand operation is an on-demand operation conducted under Part 135 that meets the following requirements.

<table>
<thead>
<tr>
<th>Two-pilot crew</th>
<th>The flight crew must consist of at least two qualified pilots employed or contracted by Air Methods.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight-crew experience</td>
<td>The flight crewmembers must have met the applicable requirements of Parts 61 and 135 and have the following experience and ratings.</td>
</tr>
<tr>
<td>• Total time for all pilots:</td>
<td></td>
</tr>
<tr>
<td>PIC – A minimum of 1,500 hours</td>
<td></td>
</tr>
<tr>
<td>SIC – A minimum of 500 hours</td>
<td></td>
</tr>
<tr>
<td>• For multi-engine, turbine-powered aircraft, the following FAA certification and rating requirements:</td>
<td></td>
</tr>
<tr>
<td>PIC – Airline transport pilot and applicable type rating</td>
<td></td>
</tr>
<tr>
<td>SIC – Commercial pilot and instrument ratings</td>
<td></td>
</tr>
<tr>
<td>• For all other aircraft, the following FAA certification and rating requirements:</td>
<td></td>
</tr>
<tr>
<td>PIC – Commercial pilot and instrument ratings</td>
<td></td>
</tr>
<tr>
<td>SIC – Commercial pilot and instrument ratings</td>
<td></td>
</tr>
<tr>
<td>Pilot operating limitations</td>
<td>If the SIC of a fixed-wing aircraft has fewer than 100 hours of flight time as SIC flying in the aircraft make and model, a type rating is required in the type aircraft being flown, and the PIC is not an appropriately qualified check pilot, the PIC shall make all takeoffs and landings in any of the following conditions.</td>
</tr>
<tr>
<td>• The prevailing visibility for the airport is at or below 3/4 SM.</td>
<td></td>
</tr>
<tr>
<td>• The runway visual range for the runway to be used is at or below 4,000 feet.</td>
<td></td>
</tr>
<tr>
<td>• The runway to be used has water, snow, slush, ice, or similar contamination that may adversely affect aircraft performance.</td>
<td></td>
</tr>
</tbody>
</table>
Flight Operations – General

- The braking action on the runway to be used is reported to be fair or nil.
- The crosswind component for the runway to be used is in excess of 15 knots.
- Wind shear is reported in the vicinity of the airport.
- Any other condition in which the PIC determines it to be prudent to exercise the PIC’s authority.

Crew pairing

Either the PIC or the SIC must have at least 75 hours of flight time in that aircraft make and model, and, if a type rating is required for that type aircraft, the flight time must be as either the PIC or SIC.

A pilot conducting an eligible on-demand operation may begin an instrument approach procedure to an airport that does not have a weather reporting facility operated by the U.S. National Weather Service, a source approved by the U.S. National Weather Service, or a source approved by the Administrator if the following conditions are met.

- An alternate airport that has a weather-reporting facility operated by the U.S. National Weather Service, a source approved by the U.S. National Weather Service, or a source approved by the Administrator is designated on the flight plan.
- The latest weather report issued by the weather-reporting facility includes a current local altimeter setting for the destination airport. If no local altimeter setting for the destination airport is available, the pilot may use the current altimeter setting provided by the facility designated on the approach chart for the destination airport.

2.26.8 IFR Enroute Requirements

IFR enroute operations shall comply with applicable CFRs and Operations Specifications Paragraphs B031, B032, B034, B035, and B050, as applicable.
2.26.9 IFR Limitations
Flight is prohibited under IFR in Class G airspace unless Operations Specifications Paragraphs A014, C064, or H113 (as appropriate) have been issued and complied with.

2.27 Inadvertent Instrument Meteorological Conditions (IIMC) Recovery
The base lead pilot at helicopter bases of operations, with the assistance of the aviation manager, will develop an IIMC recovery procedure and complete IIMC Procedure Template – 5159 form. The fillable PDF template for this form is available on > Flightdeck > Resources > Corporate Forms (AMC).

This procedure will be posted at the respective base and available to the pilot in the aircraft. The pilot shall become knowledgeable about the procedure. The procedure will include at least the following information.

- The priority and most important aspect of an IIMC procedure is to maintain aircraft control. Positive control of the aircraft with reference to instruments must take priority over all other duties.
 - Attitude (level)
 - Heading (turn only to avoid known obstacles)
 - Power (adjust to climb power)
 - Airspeed (adjust to climb airspeed)
- Climb to the minimum safe altitude to clear all obstacles in the area.
- De-goggle when safely able (if appropriate).
- Make all turns no greater than standard rate.
- Contact appropriate Approach Control/Center and declare an emergency. Squawk 7700 when able. Report location, altitude, heading, fuel status, and number of persons on board. State that you are inadvertent IMC and request assistance.

In order of preference below, the pilot shall inform ATC as to how they wish to proceed:

1. Radar vectors to VMC conditions
2. Vectors to the closest approach

Complete the approach procedure to landing or entering VMC conditions. Maintain VMC, and land.

For the local area, determine the most likely airports and approaches for an IMC procedure, and complete the IIMC Procedure Template. Ensure these approaches are available on the aircraft and reviewed with each pilot on an annual basis.

Coordinating with the air traffic control (ATC) facility that is responsible for the area of operation of the base can be productive. If possible, meet with the manager of the ATC facility and have them review the procedure so that they are familiar with it.

2.28 International Operations

2.29 Maintenance Inspection After Occurrence or Incident

At any time that safety of flight or airworthiness is in question, the pilot will discontinue the flight. Pilots who make an unscheduled landing for reasons such as securing a door or seatbelt, or to investigate a bird strike to nonrotating parts are authorized to resume flight without a logbook entry only if no damage has occurred. In all other cases, a logbook entry will be made and maintenance will be contacted. The aircraft will not be flown until maintenance has inspected and released the aircraft for flight to include a logbook entry.
2.30 Maintenance Operational Check – Post-Maintenance

A conversation between the duty pilot and the mechanic must take place before any maintenance being performed on Air Methods aircraft.

Any maintenance performed must be entered in the Air Methods Record of Maintenance. For all routine maintenance performed in the field by a company mechanic, a “Conform Your Aircraft (CYA)” check or a “Required Inspection Item (RII)” inspection will be performed. A CYA check may be performed by a pilot when a second mechanic is not available. If a second mechanic is available, an RII inspection will be performed according to the RII guidance in the General Maintenance Manual (see Maintenance Checks).

The CYA will include a thorough face-to-face briefing at the aircraft between the person performing the work and the pilot performing the CYA. The pilot performing the CYA is required to do a general overview of the area in which the maintenance was performed. The pilot shall look for items such as the following:

-Disconnected lines
-Proper safeties (including safety wire, cotter pins, and lock tabs)
-Oil or fuel
-Tools, rags, or flashlights left behind
-Cowlings or panels that were opened or removed
-Components or lines that were repositioned or removed to facilitate maintenance

A note shall be included in the corrective action entry, as follows: “CYA performed by_______” (the person performing the CYA will initial the blank space).

NOTE Pilots performing the CYA will treat the action as they would a pre-flight check. The pilot’s initials on the Maintenance Log do not constitute the certification or acceptance of any maintenance work relative to approved Parts 135 and 145 inspection requirements.
2.31 Malfunction or Failure of Required Equipment

All mechanical irregularities discovered during the course of a flight will be brought to the attention of the maintenance department and properly documented. Pilots shall comply with this manual’s procedures under “Mechanical Interruption Summary Report (MIS)” on page 144, and “Service Difficulty Reports” on page 158.

2.32 Medical Oxygen Tanks – Filling and Changing

When necessary, Air Methods pilots who have been trained, qualified, and authorized, as specified in the Air Methods Pilots Maintenance and Servicing Procedures, may be authorized to fill and change out medical oxygen tanks in the company aircraft.

2.33 Operating Near Other Aircraft

Air Methods pilots will not operate aircraft in formation flight; however, certain instances, such as photo flights or memorial services, may warrant operating near other aircraft. In those cases, only the pilot and necessary flight crewmembers will be on board the aircraft. In all cases, aircraft will not be operated in such a manner as to create a collision hazard.

All parties involved in operations near other aircraft will only conduct the operation after an extensive briefing. Pilots will remain in communication with each other and announce intentions over a predetermined discrete radio frequency. Under no circumstances will aircraft be operated closer than five rotor discs or wing-spans. The chief pilot, director of operations, or regional aviation director must grant approval before any such operations.
2.34 Overdue or Missing Aircraft

Air Methods has a lost communications, or overdue or missing aircraft policy, which all personnel will follow in the event of an overdue or missing aircraft.

Any Air Methods aircraft on an IFR flight plan that is reported by the Flight Service Station as being overdue and for which the PIC has not called in by telephone as required will be considered overdue.

For aircraft being tracked electronically on a VFR flight plan in which the communicator identifies a flight path deviation with explanation, the communication specialist should immediately attempt to establish radio communication with the aircraft to vet the deviation for safety purposes. If communication cannot be established, the lost communications, or overdue or missing aircraft procedures should be initiated immediately.

Any aircraft not being tracked electronically on a VFR flight that fails to arrive at any given destination within a 15-minute time factor of the most recent estimated time of arrival (ETA), or fails to communicate with the Communication Center within 15 minutes of an unscheduled landing, or fails to communicate with the Communication Center for 15 minutes after the last required position report will be considered overdue.

Upon expiration of the 15-minute time factor without communication, the communicator is to initiate the lost communications or overdue aircraft procedures. The procedures outlined in the applicable PAIP will be followed step by step, and all times and information will be filled in appropriately. These steps include the following:

- Call the referring and receiving hospitals or agency to confirm the aircraft is not there.
- Contact shall be made to the FBO of the intended landing airport, if applicable. Ask if they have been in radio contact with the aircraft and, if so, the approximate time an ETA reported to their facility. Also, have the facility try to make radio contact with the aircraft.
- Make at least two attempts to call the aircraft on the appropriate frequency.
- Notify the appropriate Air Methods officials per the Air Methods PAIP program.
- Contact the Operational Control Center at (866)676-3442 to confirm that they do not know the status of the aircraft.
If the communications specialist is still unable to locate the aircraft, the following procedure shall be followed.

- Compute, with the latest available information, the last known location of the aircraft.
- If the aircraft has not been located within 15 minutes of the initial expiration of the 15 minutes’ allotted time, the aircraft shall be considered “missing.” Only an Air Methods official can declare the aircraft officially “missing.”
- At the time of declaring the aircraft missing, the Flight Service Station (FSS) or the Denver FSDO will be notified by the Air Methods chief pilot or director of operations. The following information will be supplied.
 - Tail number of the aircraft
 - Number of persons on board
 - Route of flight and common paths taken
 - Destination and ETA to destination
 - Last known computed location of the aircraft
- Outside agencies should be contacted for assistance. Company aircraft will not be used in search and assist operations without direct approval from the chief pilot, director of operations, or regional aviation director.
- The Communication Specialist should notify the receiving and sending facilities and speak with the director of nursing. The following information should be given.
 - “At the present time, the Air Methods aircraft that was on the way to your facility or departed your facility for (receiving hospital) is overdue.”
 - Provide the patient’s name for clarification.
- After the aircraft has been located, all persons or agencies listed on the Communication Flow Sheet will be notified.
2.35 Overwater and Extended Overwater Operations

Overwater and extended overwater operations shall meet or exceed the following regulations: 14 CFRs 91.205, 135.165, 135.167, 135.168, and 135.183, as applicable.

Additional equipment, training, etc. may be required depending on the complexity of the operation.

An overwater operation is when an aircraft is operated for hire over water and beyond power-off gliding distance from shore. The term water means an ocean, sea, lake, pond, or river.

Shore means that area of the land adjacent to the water of an ocean, sea, lake, pond, river, or tidal basin that is above the high water mark and excludes land areas unsuitable for landing, such as vertical cliffs or land intermittently under water during the particular flight.

A single-engine aircraft operated over water must be equipped with floats. Pyrotechnic signaling devices that are stored in all overwater-designated aircraft, and that are maintained and tracked by Air Methods may not be removed from the aircraft (except in the case of emergency). Other equipment used by crewmembers is not the responsibility of Air Methods.

NOTE Autorotational distance refers to the distance a rotorcraft can travel in autorotation.

Required equipment, after April 24, 2017, except as provided for in §135.168(c), when authorized by the certificate holder’s operations specifications, or when necessary only for takeoff or landing, no person may operate a rotorcraft beyond autorotational distance from the shoreline unless it carries the following:

- An approved life preserver equipped with an approved survivor locator light for each occupant of the rotorcraft. The life preserver must be worn by each occupant while the rotorcraft is beyond autorotational distance from the shoreline, except for a patient transported during a helicopter air ambulance operation, as defined in §135.601(b)(1), when wearing a life preserver would be inadvisable for medical reasons.

Multi-engine aircraft that can be operated with the critical engine inoperative at a weight that will allow it to climb at least 50 feet a minute at an altitude of 1,000 feet above the surface as provided in the Airplane Flight Manual or the Rotorcraft Flight Manual as appropriate do not require floats.
Additional requirements for extended overwater operations include the following:

- Each flight crewmember, medical personnel/crewmember, and passenger shall wear an approved life preserver equipped with a locator light.
- Each aircraft shall maintain two-way radio communications with an appropriate Air Traffic Control facility.
- Each aircraft shall be equipped with a functioning GPS meeting the requirements of TSO C-129 or equivalent. Each GPS unit shall be equipped with a current database.
- During daylight hours, operations shall be conducted on either a VFR/DVFR or IFR flight plan.
- Operations conducted at night as defined by 14 CFR Part 1.1 will be conducted on an IFR flight plan.

All survival equipment required by the CFRs for overwater and extended overwater operations shall be maintained in accordance with applicable CFRs and appropriate maintenance documentation.

2.36 Passenger and Medical Crewmember Briefing

[91.517, 91.519, 135.23, 135.117, 135.127, 135.621]

2.36.1 Passenger Briefing

When any conscious and coherent patient, passenger, or non-Air Methods employee is being transported, the PIC will be responsible to ensure that he or a trained medical person will orally brief him.

The PIC shall ensure that the briefing is completed before taxi or takeoff. The briefing shall be supplemented by the Air Methods-approved passenger briefing card for the make and model of aircraft operated and shall be available to each passenger.

The following items shall be included in briefings.

- No smoking within 50 feet of the exterior of any aircraft, nor at any time within the interior of any company aircraft
• Use of seatbelts
• Use of personal electronic devices (PED)
• Upright positioning of all seat backs (if available) before takeoff and landing
• Location and operation of passenger entry doors and emergency exits
• Location of survival equipment
• Location and operation of fire extinguisher
• If over water, instructions and location for floatation gear and pyrotechnic devices
• Ditching procedures and special instructions if the flight involves extended over water operation
• For rotorcraft flights operated beyond autorotational distance from the shoreline as defined in 14 CFR 135.168(a), use of life preservers, ditching procedures and emergency exit from the rotorcraft in the event of a ditching; and the location and use of life rafts and other life preserver devices if applicable
• Normal and emergency use of oxygen, if the flight is above 12,000 feet MSL

2.36.2 Required Medical Crewmember Briefing and Training
As stated in §135.621(a), the PIC or other flight crewmember must ensure that all clinicians receive and complete an HAA medical personnel-specific safety briefing before each HAA operation in which they participate, or as authorized by §135.621(b), have completed the certificate holder’s approved medical personnel safety training program within the previous 24 months.

There is no grace period associated with this 24-calendar-month training period. This training must cover the following:

• Physiological aspects of flights
• Patient loading and unloading
• Safety in and around the helicopter
• In-flight emergency procedures
• Emergency landing procedures
• Emergency evacuation procedures
• Efficient and safe communications with the pilot
• Operational differences between day and night operations, if appropriate.

2.37 Passenger Occupancy of a Pilot Seat and Manipulation of Flight Controls

[135.75, 135.113, 135.115]

The PIC will not allow persons other than a pilot employed by Air Methods Corp. who is qualified in the aircraft, or an authorized safety representative of the administrator who is qualified in the aircraft and is checking flight operations, to manipulate the controls of an aircraft during flight. At the discretion of the PIC, a pilot seat may be occupied by a clinician or a passenger.

Whenever an FAA inspector who is performing the duties of an Aviation Safety Inspector presents an Aviation Safety Inspector Credential form (FAA Form 110A) to the PIC that inspector will be given free uninterrupted access to the pilot compartment of that aircraft. This does not limit the emergency authority of the pilot to exclude anyone from the pilot compartment in the interest of safety. A seat on the flight deck with a headset will be provided to the Administrator while conducting enroute inspections.

A PIC may allow a passenger to occupy a pilot seat in concurrence with the medical personnel/crewmembers. Passengers may include a family member of the patient being transported, ride-along program participant, emergency medical service personnel, or law enforcement personnel. Passengers must be properly briefed before flight operations begin.
2.38 Personnel Qualifications

[135.247]

All flight crewmembers are charged with the responsibility of maintaining their qualifications in keeping with the requirements outlined in the CFRs for their assigned position. Qualifications include the pilot certificates and ratings appropriate for the assignment. Each crewmember shall keep a personal account of the due dates, as appropriate, for all required checks, training, recency of experience requirements, and flight physicals. Additionally, each crewmember will comply with all flight-time and rest requirement as prescribed by the CFRs.

Whereas the company desires to keep its employees current, and will make every attempt to do so, lapses in qualification will be viewed primarily as the fault of the person whose qualification lapsed if the director of operations, director of maintenance, and/or chief pilot was not made aware of the pending lapse in advance.

2.39 Post-Accident Incident Plan (PAIP)

The regional aviation director, in conjunction with an appropriate aviation manager at each program, shall develop a PAIP. The appropriate aviation manager will coordinate with the respective communications center to ensure the PAIP provides timely notification to Air Methods Part 135 certificate management and other key Air Methods personnel. The PAIP will indicate who is to be notified and who is responsible for making the notification. The notification requirements are specified under “Accident-Notification Requirements” on page 36.

IMPORTANT The Operational Control Center shall be notified by the regional aviation director in writing at least 48 hours before initiating any practice PAIP drills in order to avoid noncompliance, false alarms, and undue stress. This prior notification requirement is met by sending details of the PAIP drill, by email, to occ@airmethods.com and receiving an acknowledgment. The PIC must be aware of practice PAIP drills before departure. The appropriate aviation manager shall advise the OCC before initiation and will emphasize the word “drill” in that communication.

The following are the minimum required items to be included in the PAIP.

- **Medical emergencies** – Requiring an unscheduled landing.
- **Weather or mechanical difficulties** – Those resulting in an unscheduled landing, in-flight abort, or change in destination.
Flight Operations – General

- **Overdue aircraft** – When an aircraft fails to reach its destination within 30 minutes of estimated time of arrival or overdue in-flight reports by 30 minutes.

- **Actual emergency** – Either reported via radios or notification from ATC.

- **Post-incident (damaged involved)** – Notification from any party that the aircraft has been involved in an incident resulting in damage to the aircraft, or a more serious accident resulting in damage or injury.

 - Procedures on notifying the Operational Control Center of an accident, incident or occurrence which affects or could affect safety of flight. The 24-hour contact number for the Operational Control Center is (866)676-3442.

 - Upon notification, the Operational Control Center will contact the appropriate Air Methods Certificate personnel.

 - Immediate notification of the Operational Control Center is mandatory following an accident, incident or overdue aircraft.

 - The notification to the OCC shall include but not be limited to the following:
 - PIC of the aircraft
 - Tail number and program call sign
 - Souls on board and whether carrying a patient
 - Current location
 - Nature of the PAIP
 - Any damage or injuries

 - Procedures to alert program security and public relations personnel, if necessary.

 - Procedures to request assistance from law enforcement and other emergency programs.

 - Procedures to perform an annual review of the PAIP to ensure changes in personnel and contact information are updated.

 - At a minimum the plan shall be tested and evaluated annually.

The regional aviation director will ensure that the PAIP plan for each program under his control is tested and evaluated on an annual basis. The regional aviation director or his designee will be responsible for maintaining the documentation. An actual PAIP will qualify as the test that is required in this section.
2.40 Pilot’s Maintenance and Servicing Procedures

In certain cases, Air Methods pilots may be authorized to perform specific maintenance on an aircraft. The pilot will be trained, qualified, and authorized to do the task in accordance with Air Methods Pilot Maintenance and Servicing Procedures (PMSP). Any preventive maintenance performed by the pilot will be documented in the aircraft maintenance records in accordance with 14 CFR 43.9 and the Air Methods PMSP. The completed training record and quiz shall be forwarded by the authorized instructor to the pilot records department through the appropriate 135FORMS@airmethods.com email address for disposition into the pilot’s training records. Pilot training records specialists are agents for the chief pilot.

Servicing items such as refueling, adding oil to engines and gearboxes are not considered preventive maintenance. Pilots will not perform specific maintenance on any aircraft or system for which they have not received training.

2.41 Pre-flight Preparation

In making a decision to accept or reject a requested flight, each PIC will consider all relevant factors that might affect the safety of flight. These factors will include (but are not limited to) weather, duty-time considerations, CFR required fuel requirements, airport, heliport, and navigation aid conditions, aircraft equipment and maintenance status, and physical and emotional condition. The pilot will also consider safety recommendations from medical and other involved personnel/crewmembers.

If a pilot is uncertain that a requested flight can be completed according to the requirements of this manual and of the CFRs, she shall notify the medical personnel/crewmembers on board, communications center, and others as appropriate. This notification shall explain the factors included in the pilot’s decision making process and provide insight into the pilot’s professional judgment.

The pilot should give this notice with minimum delay, and include acceptable alternative destinations and/or courses of action. In considering these possibilities, the pilot should seek input from the medical personnel/crewmember, communications center, or others as appropriate. It is the pilot’s responsibility to ensure that her decision is made with safety and legality as the ultimate controlling principles.
For operations conducted under VFR, the PIC, in the absence of approved weather sources (reference Operations Specifications Paragraph A010), may use weather information based on her own observations or those of other persons competent to supply them.

As part of her pre-flight duties, the assigned PIC will note the date and aircraft flight hours as indicated in the aircraft logbook. The PIC will then compare those times to the Aircraft Status Report, retrievable on 411 to determine aircraft status.

The P.M. shift pilot will print the most current version of the Aircraft Status Report, transfer any pen and ink changes, and place it with the aircraft maintenance logbook.

The PIC then must determine whether the flight or series of flights can be completed without any required maintenance item coming due before the aircraft returns to home base. If a flight cannot be completed without a maintenance item becoming overdue, the PIC will immediately contact the duty mechanic for instructions. Under no circumstances will a PIC commence a flight if any required inspection time will be exceeded.

The PIC will review the aircraft Maintenance Record and aircraft status report in the aircraft to determine whether any discrepancies have been either deferred in accordance with the approved MEL, or corrected. If the PIC finds a mechanical irregularity that has not been either corrected or properly deferred, she will not take off, but will contact the duty mechanic for instructions. Each pilot who finds a mechanical discrepancy or any item related to aircraft airworthiness will document that discrepancy in the aircraft logbook.

Once the aircraft is safely on the ground, the procedures under “Do-Not-Fly Indicators” on page 53, must be adhered to.

The PIC will determine that for deferred and corrected mechanical irregularities the aircraft has been certified approved for return to service by an airframe and/or powerplant mechanic (or by the director of maintenance). This certification will appear on the aircraft maintenance log in the area of the form reserved for remarks and maintenance use.

The PIC shall become familiar with all available information concerning each flight including the following:

- For IFR flights, or flights not in the vicinity of the airport or heliport (helistop) - Weather reports, forecasts, alternates, and known air traffic delays
- For all flights – Runway lengths, takeoff and landing requirements as indicated by an approved aircraft flight manual; if a flight manual does not exist, then the pilot information manual
• NOTAMs (FDC, D, and L as applicable), including TFRs
• Condition of navigation facilities
• Weather (including hazards)
• Medical control, flight-following centers, and medical personnel/crewmembers will be kept abreast of any weather or operational limitations, which may affect medical flights

2.42 Pre-flight Risk Analysis

[135.617 135.619]

• The PIC must conduct a Pre-flight Risk Analysis (PFRA) and complete the PFRA worksheet prior to the first leg of each HAA operation.
• The PIC will submit the PFRA to the OCC for review and receive approval prior to the first leg of each HAA operation.
• The PFRA application will log the date and time a specific worksheet is completed by a PIC.
• The PFRA application will retain completed PFRA worksheets for at least 90 days from the date of the operation.
• The Communications Center will determine from the HAA task requestor whether another HAA operator has refused or rejected a flight request and inform the PIC of any such occurrence.
• The OCC communications specialist will obtain and document on the PFRA worksheet approval from the OCC supervisor when a PFRA risk is in the high category.

For details on the pre-flight risk analysis program and the process for Operational Control Center review, please see the Pre-Flight Risk Analysis Program manual on > FlightDeck > Resources > Corporate Publications > Flight Operations Publications > Pre-flight Risk Analysis Program.
2.43 Pre-start/Pre-takeoff Confirmation Check

Each pilot will use the pre-start/pre-takeoff confirmation check for all operations. The placard will be affixed to each instrument panel in plain view to the pilot. The confirmation checks include essential items that will be confirmed by the pilot before each start and takeoff. Before start and takeoff, each pilot will verbally challenge herself and respond verbally to each item on the confirmation placard to ensure that each item is complete. Additional placards can be obtained through the RAM or RAD of each region when needed. This manual includes a replica of the required placard; in the event that a placard is missing and a replacement cannot be immediately located, the placard can be printed and used temporarily. (See “Pre-start/Pre-takeoff Confirmation Check”.

The FAA defines runway incursion (in part) as, “Any occurrence at an airport involving an aircraft, vehicle, person, or object on the ground that creates a collision hazard or results in a loss of separation with an aircraft taking off, intending to takeoff, landing or intending to land.” It is the responsibility of each pilot (PIC or SIC) operating an Air Methods aircraft to prevent runway incursions.

Using the following procedures, though not all-inclusive, will help prevent runway incursions.

- Pilots operating aircraft without a SIC shall review airport diagrams before entry into the traffic pattern or before hover/taxi operations. Airplane pilots should have the airport diagram out for reference during all taxi operations.
- Pilots operating aircraft with an SIC will have the airport diagram out and available for reference by the pilot not flying during all taxi operations.
- Review all NOTAMs for runway/taxiway closures and construction areas.
- Request progressive taxi instructions when unsure of the taxi route.
- Turn on aircraft lights while taxiing.
- It is advisable to write down taxi instructions so as to not forget instructions and to act as a guide for reading back clearances.
- In a two-pilot crew configuration, any disagreement over taxi instructions must be resolved before beginning the taxi operation.
- All pilots shall read back all taxi and hold short of runway instructions in the order issued by ATC. Reading back instructions in the order issued by ATC will help prevent “hear back/read back” errors. Standard phraseology will be used to facilitate clear, concise communication between the flight crew and ATC.
• While taxiing, monitor instructions to other aircraft and question ATC as soon as possible if a conflict between your and another becomes apparent.
• Before taking a runway for takeoff, scan the full length of the runway and approach paths for other conflicting aircraft.
• Do not hold in position for an extended period of time on an active runway without direct communication with ATC. This is especially important at night.
• Clear the active runway on rollout as quickly as possible, and then wait for taxi instructions before further movement.
• When approaching to land, monitor ATC instructions to other aircraft to “taxi into line up and wait” for the runway you are cleared to land on. Also, be aware of other aircraft being cleared to land on the same runway you have been cleared to land on.
• At uncontrolled airports, or airports without operational control towers:
 – Follow standard air traffic procedures. Use AF/Ds or other similar commercial products to determine if other than standard traffic pattern procedures are dictated for the particular airport where operations are planned.
 – Monitor CTAF or UNICOM as recommended in the AIM.
 – State the name of the airport at the beginning and end of each radio transmission.

Further guidance may be found in the Aeronautical Information Manual.

2.44 Safety Belts, Child Restraints, and Carry-On Baggage
[91.517]

Each required flight crewmember, occupying a station equipped with a seat belt and/or shoulder harness, shall have that seat belt and (when equipped) shoulder harness fastened at all times when at that station. The shoulder harness may be removed if it inhibits performance of the individual’s required duties, except during takeoff, approach, landing, and surface operations.
Each passenger, including medical personnel, shall occupy an approved seat or berth in accordance with 14 CFR 91.517. Any child seat used must conform to all applicable motor vehicle standards and have on it, in red letters, the following statement: “THIS RESTRAINT IS CERTIFIED FOR USE IN MOTOR VEHICLES AND AIRCRAFT.” Children’s seats not bearing the above statement must bear a label showing conformity with a foreign government or United Nations Standard. Children will not be placed in a booster-type seat.

All pilots must ensure to the extent possible that passengers, carry-on baggage, and cargo are checked and found free of hazardous material and unauthorized weapons.

Cargo and carry-on baggage shall be carried in an approved rack, bin, or compartment. All cargo and carry-on baggage shall be secured by seat belt or approved tie-down device, which will provide strength to eliminate shifting under normal anticipated flight and ground conditions.

All cargo and carry-on baggage shall be stored so:

- As to not impose loads on seats or structures which would exceed certificated load limits
- That it is placed or covered so as to prevent injury to occupants
- That it is located so as to not block aisles between crew and passengers, emergency or regular exits, seat belt, and no-smoking signs

2.45 Search-Assistance Flight Limitations

Air Methods does not engage in search and rescue operations, since our primary function is medical transportation. A search assistance operation is defined as a flight operation conducted to assist in a search. Pilots may accept requests for search assistance for the sole purpose of locating what is being searched for. Pilots will relay the position to the appropriate agency or communication center. Under no conditions will Air Methods pilots conduct rescue operations.

NOTE This section does not apply to authorized Part 133 Class D Operations (external load).

Pilots may accept requests for search assistance once they have determined that the request does not constitute a rescue or include any elements of a rescue operation.
If the pilot has any doubt concerning the request, she will not accept the request or contact the appropriate manager for guidance. Before departing on a search-and-assist flight, the pilot must notify her regional aviation director or regional aviation manager, and the Operational Control Center at (866)676-3442 of the request.

In all cases, the pilot will take the most conservative approach.

The following operations are prohibited.

- Participation in any rescue operation
- One-skid landings
- Jumping or rappelling from the aircraft
- Sling loading personnel or equipment with the aircraft
- Open doors during flight
- Out-of-ground effect hovering

These prohibited operations are not inclusive of every type of rescue. Due to the broad scope of what constitutes a rescue, it is impractical to attempt to list every possibility here. It is incumbent upon the pilot to determine that the flight operation is not a rescue of any type. If a request for search assistance contains an element of a rescue, the pilot will not accept the flight request. If a search assistance flight in progress appears that it may involve any element of a rescue, the flight will be aborted.

Search assistance requests from law enforcement agencies to help locate criminals or fugitives will not be accepted. Any operation other than normal “on-scene” operations are prohibited. Pilots will maintain minimum altitude for VFR as specified in this manual.

Except for takeoff and landing, the minimum airspeed for search operations is the aircraft’s Vy. Pilots will fly the aircraft only and will not participate in the search effort. The medical crew or passengers such as law enforcement officers will be the primary searchers. Dropping objects such as bottled water or survival kits shall be permitted when authorized by the respective regional aviation director, director of aviation risk and compliance, chief pilot, or director of operations, and in compliance with CFRs and “Dropping Objects” on page 54.
2.46 Securing Cargo

The loss of the smallest items from the cabin or baggage area, such as a rag or tie-down rope, can result in the loss of a tail rotor, aircraft, life, and/or property. Cargo must be secured as follows:

- The loading and unloading of the aircraft shall be at the discretion of the PIC and under her supervision whenever possible.
- The pilot must brief personnel on securing of cargo, emphasizing the importance of proper tie-down.
- All containers must have lids or covers to prevent small objects from being sucked out. Lids must be securely fastened in a manner that will prevent opening in flight.
- All sharp cutting tools or objects must be secured in a manner that will prevent injury to passengers or the damage to the aircraft.
- The pilot must explain to ground crew personnel and off-loading passengers that all lightweight objects on the ground near the takeoff area must be secured to prevent being blown into rotor blades or causing injury to personnel.

2.47 Securing Aircraft after Shutdown

2.47.1 Parking Brakes and Chocks – Wheeled Aircraft

During the portions of ground taxi operations when any wheeled aircraft is stationary more than momentarily, with engines running, the parking brake must be set. This helps to prevent unnoticed, inadvertent motion of the aircraft while flight crew accomplishes checklists or other essential operational chores.

Before starting a trip, each pilot of a wheeled aircraft shall ensure that the aircraft is equipped with at least one pair of chocks of sufficient size, weight, and strength of material to prevent motion of the aircraft with the engines shut down, with or without the parking brake being set. In evaluating the adequacy of the chocks, pilots shall consider slope and surface conditions of parking areas expected to be encountered during the trip. Any guidance on type or use of chocks contained in the RFM/AFM or POH shall be observed.
Upon stopping in the parking spot, the pilot shall set the parking brake until the engines are shut down and the shut-down checklist or equivalent has been completed. Before leaving the immediate vicinity of the aircraft, the pilot shall install the chocks unless adequate chocks have already been installed by ramp personnel. The parking brake may then be left in the set position or released, according to the ramp conditions, possibility of an FBO requirement to move the aircraft and/or guidance of the RFM/AFM or POH. It is important to remember to follow the aircraft flight manual when ground handling the aircraft to avoid breaking a sheer pin or otherwise damaging the aircraft. Before starting the final pre-flight walk-around required by this manual, the pilot shall ensure that the parking brake is set. During the walk-around, the pilot shall ensure that the chocks are removed.

2.47.2 Propeller Ties – Single-Engine Airplanes
Before starting a trip, each pilot of a single-engine airplane shall ensure that the airplane is equipped with a set of propeller ties (propeller anchors) that are designed and adequately constructed to prevent rotation of the propeller under most wind conditions that would allow the airplane to be left outside. After shutdown, the pilot shall install these ties before leaving the vicinity of the airplane.

In addition, the pilot or other authorized Air Methods employee (such as a mechanic) shall ensure that the ties are installed before towing the airplane or allowing it to be towed.

Before starting the final pre-flight walk-around, the pilot shall ensure that the prop ties are removed and stowed adequately in the airplane.

2.47.3 Propeller Ties – Multi-engine Airplanes
Before starting a trip, each pilot of a multi-engine airplane shall ensure that the airplane is equipped with a set of propeller ties (propeller anchors) that are designed and adequately constructed to prevent rotation of the propeller under most wind conditions that would allow the airplane to be left outside. Before the airplane is left outside for an extended period (such as overnight), each pilot of a multi-engine airplane or other authorized Air Methods employee (such as a mechanic) shall ensure that propeller ties (propeller anchors) are installed on both propellers.

Before starting the final pre-flight walk-around, the pilot shall ensure that the prop ties are removed and stowed adequately in the airplane.
2.47.4 Engine Exhaust Covers – Airplanes with PT6 Series or Similar Engines

Before starting a trip, each pilot of an airplane with PT6 series or similar engine shall ensure that the airplane is equipped with a set of exhaust covers of suitable size and material for the type of stacks installed. After shutdown and before leaving the vicinity of the airplane, the pilot of any airplane (with PT6 series or similar engine) shall install exhaust covers any time precipitation (especially snow or other frozen precipitation) is falling or imminent and surface air temperature is likely to be below freezing before the airplane is started again or moved into a heated hangar. This will help prevent the freezing or refreezing of water at the bottom of the power turbines, preventing rotation of the power section of the engine.

The pilot should take care not to attempt to put the covers on before the outer portions of the exhaust stacks have cooled enough to prevent burn injury or damage to the covers.

Before the airplane is left outside for an extended period (such as overnight), the pilot or other authorized Air Methods employee (such as a mechanic) shall ensure that exhaust covers are installed.

Before starting the final pre-flight walk-around, the pilot shall ensure that the covers are removed and stowed adequately in the airplane.

2.47.5 Engine Inlet Covers – All Airplanes

Before starting a trip, each pilot of an airplane shall ensure that the airplane is equipped with a set of inlet covers of suitable number, size and material for the type of inlets installed.

After shutdown and before leaving the vicinity of the airplane, the pilot of any airplane shall install inlet covers any time frozen precipitation is falling or imminent.

The pilot should take care not to attempt to put the covers on before the inlets have cooled enough to prevent burn injury or damage to the covers.

Before the airplane is left outside for an extended period (e.g. overnight), the pilot or other authorized Air Methods employee (e.g. mechanic) shall ensure that inlet covers are installed.

Before starting the final pre-flight walk-around, the pilot shall ensure that the covers are removed and stowed adequately in the airplane.
2.48 Shift-Change and Post-Mission Briefings

At the change of each shift, the PIC will conduct a briefing of the duty clinicians and any others that might be appropriate. As a minimum, the topics discussed will be as follows:

- Weather for the duty period
- Mechanical issues with the aircraft, including the medical interior and upcoming aircraft maintenance and inspections
- Flight restrictions required when operating with inoperative equipment
- Public relations events
- “Third” riders (or “ride-along”)
- Scheduled training
- Any other events that may impact that duty period’s operation

Post-flight-mission debriefings will also be completed. Items for discussion will include but not be limited to the following:

- Safety issues
- Communications problems with aircraft, portables, or other communications equipment
- Weather concerns
- Aircraft issues
- Any other noteworthy items

2.49 Stabilized Approach Concept

Pilots of both airplanes and helicopters will adhere to the stabilized approach concept, which involves maintaining the following:

- The aircraft on the correct flight path (+/- one dot for localizer courses and 3/4 scale deflection for both precision and non-precision)
- Only small changes to pitch and roll to maintain the approach
- The aircraft is on speed (speed as briefed for fixed-wing aircraft, constant power setting for helicopters)
• A stable descent rate (+/- one dot of glide slope for precision approaches and stable rate for non-precision approaches)
• A stable aircraft configuration (landing gear, flaps, etc.)
• Checklist completed

If the approach becomes unstable at any point, a missed approach will be executed. The basic tenets of a stabilized approach are early planning and, once the approach is initiated, use of constant power settings while using pitch to maintain rates of descent or glide slope.

Stabilized approaches must be established before descending below the following altitudes.

• HAA +500 feet during VFR or visual approaches and during instrument approaches when VMC
• HAA +500 feet or MDA (whichever is lower) when a circling maneuver is to be conducted after the instrument approach
• HAA or HAT +1,000 feet during any straight-in instrument approach conducted in IMC

2.50 Sterile Cockpit

14 CFR 135.100 prohibits any activity during a critical phase of flight which could distract any flight crewmember or interfere with the performance of their duties. It defines critical phase of flight as all ground operations including taxi, takeoff, landing, and all other flight operations below 10,000 feet, except cruise flight.

When medical personnel are not trained crewmembers, the Air Methods crew coordination management philosophy values their input, especially during takeoff, landing, and scene operations. Pilots must engage the medical personnel in a continuous, diplomatic, educational effort to make them aware of the need to limit conversations on the ICS during critical phases of flight to topics related to the conduct of the flight.

When medical personnel have a patient on board whose care requires their voice interaction, the resulting conversation is essential to patient care but not to the conduct of the flight. As a result, the pilot may have to isolate the medical personnel on the ICS.
It is essential that medical personnel understand that they must limit the use of the call button during these times to urgent situations requiring immediate response from the pilot.

It is essential that strict adherence to the sterile cockpit concept be maintained; the pilot will make every reasonable effort to eliminate cockpit distractions to include light from the cabin and medical intercom traffic that could result in less than full attention to operating the aircraft.

2.51 Temporary Flight Restrictions (TFRs)

Air Methods pilots shall check NOTAMs so as to maintain awareness of Temporary Flight Restrictions and coordinate with the controlling agency when operating within them. Active TFRs should be noted on the Local Area Hazards Map. Additionally, the pilot will notify the Communication Center of TFRs that may impact a flight.
2.52 VOR Equipment Checks

[91.171]

All Air Methods aircraft operated under IFR will receive a VOR operational check at intervals not to exceed 30 days. VFR aircraft will receive a VOR operational check every six calendar months. Any method described in 14 CFR 91.171 may be used to complete the check. A logbook entry showing completion will be made to include the following:

- Date completed
- Bearing error
- Place
- Methods of compliance
- Signature/certificate type/certificate number

Discrepancy: 30-Day VOR check due.

Corrective action:

DATE: _____________ PLACE: __

Complied with 30-Day VOR operational equipment check in accordance with the Air Methods Operation Manual and 14 CFR 91.171. Frequency used _____, indicated bearing error of ______. VOR equipment is within limits.

SIGNATURE: __________________________

CERTIFICATE # and TYPE_________________________
2.53 Weather Sources and Providers Approved for Aircraft Flight Planning

Weather sources for VFR and IFR flight planning are listed in Operations Specification A010. Air Methods pilots will use one or more of those sources listed, either directly or through an approved provider, to obtain required weather forecasts and reports for the flight.

Air Methods provides each base with an Aviation Sentry Account from DTN. This is the preferred provider and the service used by the Operational Control Center. This is the only provider that is supported by the Air Methods Service Desk. The preferred and Air Methods-approved providers are as follows:

- DTN Aviation Sentry
- DTC DUAT
- CSC DUATS
- Foreflight
- National Weather Service

Any Internet package or provider that uses the sources listed in A010 for weather information may be used at the pilot’s discretion.

In accordance with §135.213(a), if NWS or other approved weather sources are not available for VFR operations, a PIC may use weather information based on his own weather observation or on the observations of other competent persons.

Pilots are authorized to use the experimental Aviation Digital Data Service (ADDS) HEMS Tool to support VFR flight planning. However, the tool will not be used as the sole source of weather information and will only be used to make a “no-go” decision when results conflict with authorized weather sources.

Pilots are encouraged to take full advantage of available weather information during every flight. Approach Controls, Air Route Traffic Control Centers, Flight Service Stations, HIWAS, AWOS, ASOS, AIRMETs, SIGMETs, and TWEBs, as well as Operational Control Center Specialists can provide pertinent, up-to-the-minute data to help the pilot make informed decisions concerning the weather.
2.54 Weight-and-Balance Control
[135.23, 135.185]

2.54.1 Determining Aircraft Operational Empty Weight (OEW)
Before being placed into service, it shall be determined that each Air Methods aircraft has current weight-and-balance data available in the appropriate approved Aircraft Flight Manual (AFM). If the information is found to be outdated and/or inaccurate, the aircraft will be weighed and the empty weight and CG location established. Aircraft will be weighed per the appropriate AFM or Maintenance Manual (MM) for that make and model aircraft. The weight-and-balance record will be kept in the approved AFM and shall be on board the aircraft during all operations.

In addition to the guidance given in the aircraft MM, the following equipment (as appropriate) shall be included in the OEW.

- Stretcher or litter
- Secondary stretcher or litter
- Full and operational ready O2 system
- Full E-bottle
- Duals removed and dual covers installed
- Other medical equipment as appropriate

14 CFR 135.185 requires all Air Methods multi-engine aircraft be weighed every 36 calendar months. Aviation personnel may determine whether an aircraft complies with this regulation by checking the aircraft maintenance logbook in the aircraft. All single-engine aircraft will be weighed when a major alteration has appreciably changed empty weight and CG.
2.54.2 Pilot-in-Command Responsibilities

The PIC is responsible for ensuring the aircraft is properly loaded, and computing weight-and-balance data, as described in this section.

NOTE The PIC must ensure that the most recent weight and balance information contained in the flight manual agrees with the weight and balance information used in any computer or application based weight and balance calculations.

2.54.2.1 Loading Passengers, Baggage, and Cargo

Before takeoff, the PIC will be responsible for the oversight of proper loading of patients, passengers (including medical personnel), carry-on baggage, and cargo in the aircraft. Items placed in the baggage compartment of helicopters shall be loaded from front to back and secured in accordance with the aircraft flight manual. The PIC shall complete the required sections of the load manifest as appropriate to multi-engine or single-engine operations.

2.54.2.2 Computing Weight-and-Balance Data

The PIC will use at least one of the following methods for computing weight-and-balance data.

Manufacturer-supplied weight-and-balance data

The PIC will use the manufacturer’s supplied weight-and-balance data, including loading charts, graphs and supplemented by current alterations and changes, to calculate and account for all loading conditions and interior configurations as per the applicable approved aircraft flight manual and approved Pilot’s Maintenance and Servicing Procedures. The calculations may be completed by a computer program, an approved plotter and graph system, or chart.

Patient/passenger weights

Patient/passenger weights will be determined by one or a combination of the following:

- On inter-facility flights (one hospital to another), the sending facility will obtain the patient/passenger weight.
• On trauma call flights (accident scene), the trained and experienced ground personnel and/or clinicians will estimate the patient/pasenger weight when lifting the victim.

• If the patient/passenger is conscious and coherent, he will be asked his weight. Ten pounds will be added to the patient’s response.

• In the absence of the above-listed methods for determining patient weight, the pilot may use the following standard average passenger weights, which do not include carry-on baggage.
 – Average passenger weight – 189 pounds
 – Adult male passenger – 199 pounds
 – Adult female passenger – 178 pounds
 – Child (2 to 12 years) – 81 pounds
 – “Plane-side” loaded baggage – 20 pounds

The use of standard average passenger weights does not authorize the PIC to exceed the weight-and-balance limitations as outlined in the appropriate approved aircraft flight manual.

Removable medical equipment (bags, monitors, etc.) shall be weighed every six months and recorded in a reliable (accurate and immediately available) record. The PIC shall use these weights when computing weight-and-balance data.

When medical personnel or passengers board the aircraft, they will immediately notify the PIC of any carry-on equipment and baggage, the desired placement of each item, and the weight of each item. If the actual weight cannot be determined, the PIC may use the “plane-side” loaded baggage weight in the list above. The PIC shall adjust the weight-and-balance computations as required to ensure that the aircraft remains within the weight-and-balance limitations as outlined in the appropriate approved RFM/AFM or POH. If the PIC determines that the carry-on items or portions of them cannot be carried safely, the affected items will not be carried onboard the aircraft.

For multi-engine aircraft, each PIC is responsible for the preparation and accuracy of a load manifest containing information concerning the loading of the aircraft. The PIC will record the results of these computations on the Air Methods Daily Flight Log/Load Manifest – 5155 form. Air Methods will keep a copy of this form on file at its respective bases for a minimum of 30 days after the completion of the flight.
For additional information on weight and balance, please see the Electronic Flight Bag Manual.

NOTE The PIC is responsible for verifying that the aircraft empty weight and CG information used for any computer program, EFB application, or any other electronic aid match the data found in the Aircraft Flight Manual on the most recent weigh card.

2.55 Wind Limitations

Pilots shall comply with any wind limitations as listed in the appropriate aircraft flight manual.

NOTE Wind conditions causing an unstable approach (e.g., requiring large erratic control movements during an approach or large power changes) require a pilot to exercise caution. Pilots encountering these situations should consider executing a go-around and evaluating options for a different landing area.
3 Flight Operations – Helicopter-Specific

3.1 Frost Operation

Pilots are not authorized to take off on an aircraft that has frost, ice, or snow adhering to any rotor blade, windshield, or stabilizing or control surface, or to any airspeed, altimeter, rate-of-climb, or attitude instrument (static port).

Light accumulations of frost on the rotor system may be removed by means of the following procedure.

- Follow normal starting and run-up procedures.
- Shut down the aircraft using normal procedures.
- Visually check that all aircraft rotor blades, windshields, static ports, and stabilizing and control surfaces are free from frost.
- Check inlet barrier filters and intakes for ice.
- If no frost is present, the helicopter may continue the assigned mission.

NOTE This procedure does not apply to icing build-up of any degree.

3.2 Helicopter Night Vision Goggle Operations (HNVGO)

The following procedures are applicable to all HAA flights at night employing night vision goggles conducted under Title 14 CFR Parts 91 and 135.

HNVGO will only be conducted in aircraft with an approved Supplemental Type Certificate (STC) authorizing such operations. The Rotorcraft Flight Manual Supplement (RFMS) must be current and retained in the Rotorcraft Flight Manual (RFM).
To act as PIC using NVGs, the pilot must perform a helicopter night vision goggle operation consisting of the following:

- A before-takeoff check, takeoff, climb out, cruise, descent, approach phase of flight, and landing
- Hovering tasks
- Area departure and arrival tasks (initial reconnaissance)
- Transitioning from aided flight to unaided night flight and back to aided flight

HNVGOs must be performed in the same category, class and type, if a type rating is required, for example, Rotorcraft/Helicopter/Type (if required).

3.2.1 Crew Resource Management and Crew Briefings

For HNVGO operations below 300 feet AGL, at least one other person, if required by the RFMS, shall be equipped with NVGs during landings and departures to assist in clearing the site. The other required person, when able, is located on the side opposite the pilot, in either the front or back compartment. The other required person referenced in this paragraph must be current and trained in accordance with the approved Air Methods NVG training program. Due to the limitations of NVGs, the implementation of CRM during aided operations is paramount to safe and effective operations. Good teamwork requires positive communication between the pilot and medical crewmembers. During flight planning and crew briefings, the pilot briefs the medical crew on the following:

- Type of flight – aided, unaided, or both
- Weather for the route
- Illumination
- Lunar position (moon)
- Obstacles along the route
- NVG deficiencies
- Crew experience
- Abort criteria
The pilot analyzes the route of flight, and identifies aids to navigation, visual navigation cues, potential difficulties, and emergency landing areas, as needed. The crewmembers will aid the pilot during all critical phases of flight. Each crewmember is responsible for their quadrant of the aircraft. Examples in but are not limited to the following:

- Hovering maneuvers
- Taxiing
- Takeoffs and landings
- Area arrival and departure
- Flight in congested areas

The crew will clear the immediate area in all directions during hovering and taxi operations, and left, right, and overhead, before and after takeoff. The crew will use clearing turns to clear the area before making any climbs or descents. Crewmembers are responsible for clearing within their field of view.

- **Directing Assistance** – The pilot directs the crewmembers when assistance is needed. Crewmembers announce when they divert their attention from outside the aircraft to inside the aircraft for more than a few seconds.

- **Announcing Decisions** – Crewmembers announce decisions anytime actions deviate from the previously briefed procedures or an action of one crewmember affects the performance or responsibilities of another crewmember.

- **Offering Assistance** – Crewmembers offer assistance when information or assistance is requested, when the pilot deviates from normal or expected actions, and anytime a crewmember sees and/or recognizes anything that could pose a hazard to flight.

- **Acknowledging Actions** – All announcements or directives should be acknowledged by the intended receiver by a short and positive response indicating the message has been received.

- **Standard or Common Terminology** – Using common terms and standard phraseology in the aircraft minimizes confusion and reduces the likelihood of misunderstanding. Use explicit terms and phrases. Use terms that give object, direction and distance (for example, “tree on the left side,” or “traffic, 2 o’clock high, 1 mile. Use prominent terrain features instead of headings (for example, “Turn left towards the hill at your 2 o’clock position,” or “straight ahead to the pond”).

 - Examples of terms that describe motion: fast, slow, stop, turn, hold
3.2.2 NVIS Aircraft Lighting

- **Internal lighting** – Only the internal aircraft lighting authorized by the STC may be used during HNVGO.

- **External lighting** – Position lights will remain on for all night operations. The aircraft external lights will not be modified, for example, taped, painted, or an IR filter installed over the light. The anti-collision light and/or strobe lights may be turned off when the PIC determines that, because of operating conditions, it would be in the interest of safety to turn the lights off. A landing light, searchlight, and/or night sun will be used for all takeoffs and landings unless environmental conditions, such as blowing snow, preclude use of the lights. Blackout operations, in which all external lights are off, are not authorized.

3.2.3 Premission Planning

- In addition to normal premission planning, terminal and area forecasts shall be obtained and analyzed with particular emphasis on temperature and dew-point spread, cloud cover and visibility, sunset, sunrise, moon phase, moonrise, moonset, and illumination data for all phases of flight.

- During enroute phases of HNVGO, no pilot will operate below 500 feet AGL.

- Before initiating an approach, an aided or unaided high reconnaissance shall be conducted at or above 500 feet AGL.

- For HNVGO, only takeoffs and landings are authorized below 300 feet AGL.

NOTE Weather minimums listed in Operations Specifications Paragraph A050 apply to all HNVGO operations.
3.2.4 Abort or Go-Around Criteria

The decision to go-around shall be made before descending below obstacles or decelerating below effective translational lift. A decision to go-around shall also be made if visual contact with the touchdown point is lost.

No pilot or crewmember shall conduct HNVGOs unless the following conditions are met:

- The pilot has completed Initial, Recurrent, Requalification, and/or Transition training in accordance with the approved Air Methods NVG training program.
- The pilot meets the currency requirements of 14 CFR 61.57(f).
- The medical crewmember has completed three HNVGO in the previous 180 days.

3.2.5 Conditional Flight Release

All night operations that cannot be conducted with night vision goggles (NVGs), or under an IFR flight plan, require a Conditional Flight Release. In order to obtain a Conditional Flight Release, Night High Lighting Conditions, defined as follows, must exist.

- Cloud cover is less than broken (less than 5/8 cover)
- The time is between local moonrise and moonset
- At least 50 percent of the lunar disk is illuminated, or the entire operation is conducted over a lighted surface area. Moonrise, moonset, and lunar disk illumination data shall be consistent with the data available from the United States Naval Observatory.

A lighted surface area is an area in which prominent objects are lighted, and surface lighting is adequate to identify terrain features and establish a usable horizontal reference. The lighting required to support this level of surface definition may be manmade, natural, direct or indirect, or any combination thereof, provided these stated requirements and the requirements of 14 CFR 135.207 are met.

Changes to 411 and Flight Release will identify which aircraft and pilots are unable to conduct night operations aided by NVGs. Pilots who request a Conditional Flight Release must obtain authorization from the Operational Control Center (OCC). OCC Specialists will verify Night High Lighting Conditions exist and are reasonably expected to continue to exist for the requested Conditional Flight Release. A Conditional Flight Release is required for all unaided night flights. For this purpose, a flight is considered to be all legs of one transport.
OCC Specialists will not issue a Conditional Flight Release if Night High Lighting Conditions do not exist for the proposed route of the flight. Additionally, OCC Specialists will cancel Conditional Flight Releases if Night High Lighting Conditions cease to exist.

3.3 NVG Currency

3.3.1 Pilots

Table 1 below lists the NVG currency requirements for pilots.

<table>
<thead>
<tr>
<th>Aircraft Occupancy</th>
<th>Look-Back Period</th>
<th>HNVGO Requirements</th>
<th>HNVGO Exceedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passengers on board</td>
<td>Includes operations conducted in the current month and the preceding two calendar months.</td>
<td>Pilot must have six HNVGOs during the look-back period.</td>
<td>If a pilot has exceeded the two-calendar-month look-back period, she may perform an NVG currency flight. The NVG currency flight must be performed to an improved landing area and passengers may not be carried. An adequate number of HNVGOs must be completed to meet the six-HNVGO requirement.</td>
</tr>
<tr>
<td>No passengers on board</td>
<td>Includes operations conducted in the current month and the preceding four calendar months.</td>
<td>Pilot must have logged six HNVGOs during the look-back period.</td>
<td>If a pilot has exceeded the four-calendar-month look-back period, an NVG proficiency check with an Air Methods check pilot is required.</td>
</tr>
<tr>
<td>Crewmembers on board</td>
<td>Includes operations conducted in the preceding 180 calendar days.</td>
<td>Pilot must have logged three HNVGOs during the look-back period.</td>
<td>If a crewmember has exceeded the 180-day look-back period, an NVG currency training flight with a current and qualified NVG PIC is required.</td>
</tr>
</tbody>
</table>

All HNVGOs must be recorded on the Medical Crew HNVGO Currency Form, FO-5640. (The fillable form is available on Flightdeck > Resources > Corporate Forms (AMC) > Flight Operations.)
When operating close to the ground, the medical crewmembers must warn the pilot anytime they
detect an unexpected deviation from the intended airspeed or altitude. These deviations include
aircraft drift, unusual altitude, excessive change in rate of closure, or any unsafe condition.

In the event of Inadvertent IMC, pilots will use the IIMC recovery procedure in Section 2.27 on
page 78.

3.3.2 NVG Maintenance Requirements

For details on night vision goggle security, records, maintenance, repair, and 180-day certification
requirements and instructions, please see the NVG SOP located on > Flightdeck > Resources>
Corporate Publications > Supply Chain Publications > Night Vision Goggle Publications.

3.4 Heliport and Landing-Zone Diagrams

Each helicopter base will develop, and keep current, books or folders containing information on
each heliport or predesignated landing zone (LZ) from which pilots might reasonably be expected
to operate. One book (electronic or printed) will be maintained as a flight planning device at the
base.

As a minimum, the base copy of these books or folders will contain a graphic or textual depiction
of the heliport/LZ, the municipality and hospital name or predesignated LZ identifier, the
heliport/LZ size, lighting, and obstructions. Other recommended information may include
distance and direction from the base location, suggested fuel load for one way or round trip, and
closest fuel location.

As a minimum, the aircraft copy of these books or folders will contain the same information as
listed above; however, the graphic depiction may be replaced by a textual description of the
heliport/LZ. Use of these books or folders does not relieve the pilot of the requirement to conduct
a reconnaissance to verify the landing area condition and obstructions.

3.5 LAHSO (Land and Hold Short Operations)

Air Methods helicopters are not authorized to conduct land and hold short operations. When
Automated Terminal Information System (ATIS) is acknowledged, PIC will advise ATC that
LAHSO cannot be accepted.
3.6 Landing-Zone Limitations

The landing zone will normally be at least twice the overall length and width of the helicopter to be used, and have a reasonable approach and departure path that will not require exceeding the performance capability of the helicopter used. Landing zones may have any shape.

As a minimum, obstructions shall be cleared by 30 feet during approach and departure. When on the ground, there will be a minimum of 15 feet clearance from obstructions.

The pilot must also be able to determine wind direction from a lighted indicator, two-way voice communications, or other reliable means. Downwind approaches and takeoffs shall not be attempted with a tail-wind component exceeding the aircraft manufacturer’s flight limitation.

Rates of descent shall, when able, be kept below 300 feet per minute when less than 300 feet above the rooftop or confined landing area. Steep approach angles with a rate of descent greater than 300 feet per minute shall be avoided.

The practice of allowing medical attendants to open doors for any reason other than an emergency during landing and takeoff is prohibited.

For night operations, all landing sites must have suitable lighting to provide identification and dimensions of a suitable landing area.

3.7 Landing-Zone Safety and Crowd Control

Landing zones at scenes, day or night, must be secure before commencing an approach. Confirmation of a secured landing zone should include two-way radio communication, when available, with ground personnel. If two-way radio communication is not available, the pilot shall visually check for landing-zone security during the high reconnaissance, approach, and landing.

To maintain a safe environment when operating into a landing zone, one of the following procedures will be utilized.

- Aircraft will be shut down. At any time when the security of the scene is in question, and/or no positive crowd control is actively in place, one crewmember shall remain in the vicinity of the aircraft and provide scene security until the pilot shuts down the aircraft.
Flight Operations – Helicopter-Specific

- Aircraft power will be reduced to ground idle or a reduced power setting as specified in the Aircraft Flight Manual. Attitude/Auto Trim mode shall be off and SAS mode selected if appropriate. Controls will be secured in one of the following manners.
 - Positively locked
 - Force trim on
 - Frictioned as not to move
 - The pilot will exit the aircraft and guard the area around the aircraft. The pilot shall stay within the rotor diameter of the aircraft.

- Aircraft power will be reduced to ground idle or a reduced power setting as specified in the Aircraft Flight Manual, pilot will stay in seat in cockpit, and a trained crewmember will guard the area around the aircraft.

- Aircraft power will be reduced to ground idle or a reduced power setting as specified in the Aircraft Flight Manual, pilot will stay in seat in cockpit, and a trained crewmember will brief a first responder, such as a law enforcement officer or fireman. After being briefed, the person briefed will ensure that no one approaches the aircraft without the knowledge of the pilot.

- The contents of the briefing that the crewmember will give to the appropriate first responder is as follows:
 - Stay at least 50 feet from aircraft.
 - Do not allow anyone to approach the aircraft without permission from the pilot or a crewmember.
 - Anyone that approaches the aircraft must be accompanied by a crewmember.
 - Crew will assign personnel to help carry the stretcher to the aircraft.
 - Remember to exit in the same direction from which you approached the aircraft.

Landing-zone debris considerations include the following:

- Approaches will be made to the ground whenever possible.
- Prolonged hovering at the scene must be avoided.
A tail rotor guard may be used; this individual will be briefed by the PIC or properly trained medical personnel/crewmembers. However, the PIC retains responsibility for safety around the aircraft; this responsibility cannot be delegated.

3.8 Loading and Unloading Patients or Passengers

The loading or unloading of patients or passengers while the rotors are turning is allowed only if the pilot and/or properly trained clinician is outside the helicopter to guide and direct anyone who approaches the aircraft. Ground personnel will not come beneath the rotor disc until directed to do so by the PIC. The pilot and/or properly trained clinician must be constantly alert to prevent anyone from coming near the tail rotor. The pilot may participate in loading or unloading only if flight controls can be locked in place or frictioned so as not to move. Whenever practical, the loading and unloading of patients or passengers will be done with rotors not in motion.

Patient condition and a consensus of the pilot and medical personnel/crewmembers will determine whether the helicopter may be enplaned/deplaned with rotors turning. In all cases, the PIC determines whether enplaning/deplaning with rotors turning will be allowed.

Whenever the helicopter has landed to pick up patients or passengers, and, when practical, the pilot shall position the aircraft so that the tail rotor is away from the area from which people are expected to approach the helicopter. For aircraft equipped with a rotor system that has a forward tilt or a low clearance at the front, such aircraft shall be positioned so that all personnel movement will be to or from the 3 o’clock or 9 o’clock positions.

The helicopter may be enplaned or deplaned with rotors turning provided the following:

- The rotor tip path plane is leveled.
- IV poles and other equipment shall be kept at head height or lower.
- The controls are secure.
- The autopilot is off (if autopilot is installed).
- The force trim is on (if force trim is installed).
- Engine RPM is appropriate.
- The pilot will use appropriate hand signals when directing ground personnel to approach the aircraft.
The following terminology must be used.

- **Hot offload/offloading** – The helicopter will be deplaned with engines running and rotors turning.
- **Hot onload/loading** – The helicopter will be enplaned with engines running and rotor turning. It is recommended that the pilot not assist in physically loading the patient.
- **Cold offload/offloading** – The helicopter will be deplaned with engines shut down and rotors completely stopped.
- **Cold onload/loading** – The helicopter will be enplaned with engines shut down and rotor completely stopped.

3.9 Minimum Altitude for VFR

[135.203, 135.615]

At all times, with the exception of takeoffs and landings, Air Methods pilots will operate at an altitude allowing, if a power unit fails, an emergency landing without undue hazard to persons or property on the surface.

Air Methods helicopter pilots shall, when able, cruise at a minimum of 1,000 feet AGL, day or night.

3.10 Scene and Hospital Communications

This procedure applies to operations to or from hospitals and scenes where no established communications procedure exists. Examples of established communications procedures are CTAF, Class B, C, and D airspace, or hospitals that have established procedures for operations at their facility.

In the event that an area does not have a designated communications frequency or the frequency is unknown, the pilot will announce in the blind her intentions on 123.025. If the frequency is known, the pilot will make the announcements on that frequency.
Pilots will announce their intentions for the following operations when no established communications procedure exists.

- Approach
- At five miles from landing
- Upon landing
- Departure
- Upon takeoff
- At five miles from departure

3.11 Scene Flight Operations

Pilots will not accept flights unless they are reasonably certain of completing the flight safely under VFR conditions (except bases approved for IFR operations) based on all weather information available to the pilot at the time of departure. If deteriorating weather is encountered enroute, comply with the procedures for “Deteriorating Weather Conditions Enroute” on page 51.

Before landing, if terrain, airspace, or environmental conditions allow, a 360° high reconnaissance will be flown at a hospital or scene. If terrain, airspace, or environmental conditions restrict the 360° high reconnaissance the pilot will use the appropriate means to ensure a safe landing area. An overhead approach out of the high reconnaissance can be performed.

If the aircraft is shut down at a scene, the pilot shall visually check and confirm the location and height of all obstacles. When the aircraft is not shut down, the pilot will still be responsible for verifying the location and height of all obstacles that could have an effect on the planned departure path.

The pilot will consider safety recommendations from the medical and ground personnel. Any other safety precautions deemed necessary shall be followed.

When environmental conditions permit controllability and performance will be assured by performing a hover check, a 10 percent power margin below maximum takeoff power shall exist. If this margin does not exist, aircraft load (fuel, equipment, passengers, etc.) shall be reduced to meet this requirement.

After departure and clear of the obstacles, the pilot will accelerate to and maintain best rate of climb speed.

A turn on course will not be made until the aircraft has climbed (at a minimum) to 300 feet AGL for day operations and 500 feet AGL for night operations unless rising terrain, obstacles, or local procedures dictate.
3.12 Special Visual Flight Rules (SVFR)

Pilots operating in controlled airspace designated to the surface may request an SVFR clearance for operations conducted beneath a ceiling reported as being less than 1,000 feet.

Air Methods pilots will use the following minimum cloud and visibility requirements for SVFR operations.

- **Day** – 700-foot ceiling and 2 SM visibility
- **Night** – 800-foot ceiling and 3 SM visibility

NOTE The weather minimums in “VFR/IFR Operations – Flight Planning” on page 121, apply to helicopter pilots performing VFR/IFR transitions, as defined by that section.

3.13 VFR/IFR Operations – Flight Planning

[135.609, 135.611, 135.613, 135.615, and A050]

Air Methods pilots shall comply with the weather minimums and weather reporting requirements found in 14 CFR 135.609 or A050 for all operations in uncontrolled airspace including Part 91 flights. Air Methods pilots are authorized to use the lower night minimums found in 14 CFR 135.609, provided the following:

- The operation is permitted by Operations Specifications Paragraph A021.
- The helicopter is operated using night vision goggles (HNVGO) or a Helicopter Terrain Awareness Warning System (HTAWS) that meets the Technical Standards Order (TSO) C194 or (TSO) C151b.
- If operating HNVGO, Operations Specifications Paragraph A050 applies.
- If operating with HTAWS, the use of the inhibit function is not authorized.
- If operating below the NVIS/HTAWS minimums in 14 CFR 135.609 and both the NVIS and HTAWS systems fail or are rendered inoperative, the pilot will follow the procedures in “Deteriorating Weather Conditions Enroute” on page 51.
- IFR operations to or from destinations without an approved weather source are approved in accordance with the provisions stipulated in 14 CFR 135.611.
• IFR operations to or from destinations in uncontrolled airspace are approved in accordance with the provisions stipulated in 14 CFR 135.613 and H113.

VFR transitions from instrument approaches to adjacent helipads or landing areas are approved in accordance with 14 CFR 135.613.

Visual transitions from approved, Special Instrument Approach Procedures are approved using the weather minimums published on the procedure to be flown.

For the return leg from adjacent helipads or landing areas located in controlled airspace and within three miles of the facility providing the instrument approach, VFR transitions are approved using the VFR weather minimums of 14 CFR 135.613(2)(i), and (ii).

For the return leg from adjacent helipads or landing areas located in uncontrolled airspace, VFR transitions are approved using the VFR weather minimums of 14 CFR 135.609.

The return leg is authorized for purposes of refueling, filing IFR or returning to base if the base is located at the facility where the instrument procedure exists.

All IFR departures conducted using an approved Obstacle Departure Procedure with a visual segment will be conducted using the weather minimums specified on the chart for the procedure to be flown.

All IFR Departures conducted with a VFR to IFR transition segment will be conducted in accordance with 14 CFR 135.613(b).

VFR Flight Planning requirements under 14 CFR 135.615 require pilots, before VFR flight, to determine the minimum safe altitudes along the planned route of flight.

Air Methods pilots will determine these altitudes from information derived from current aeronautical charts or a known obstruction by adding 300 feet during day operations and 500 feet during night operations to the highest obstruction or terrain elevation along the planned flight path.

Pilots always have the choice to vertically clear obstructions or terrain features by at least 300 feet during day operations and 500 feet during night operations or to fly around the obstructions or terrain features maintaining a safe distance from them. Air Methods pilots will record the MSL elevation of the highest obstruction or terrain for each flight leg in the remarks section of the DFL. Pilots are not required to maintain this altitude for the entire leg.
For example, if the terrain elevation along the flight leg remains constant, but a 2,500-foot tower is along the flight path ten miles head, the pilot may elect to fly 1,000 feet AGL for the entire leg and circumnavigate the tower by a safe distance.

Pilots must remember that VFR flying requires the pilot to have sufficient ceiling and visibility to see and avoid obstructions, terrain and other traffic, maintain cloud clearance required by the class of airspace, and have visual surface reference during the day and visual surface light reference at night in accordance with 14 CFR 135.207.

Pilots may deviate from the planned flight path as required by conditions or operational considerations. Pilots who deviate from original flight planning are still responsible for maintaining weather and obstruction/terrain clearances in accordance with 14 CFR 135.609 and 135.615. While enroute, Air Methods pilots who deviate from planned flight paths shall, when safe operations permit, determine the new minimum obstruction/terrain clearance altitudes from current aeronautical charts or current avionics databases approved for navigation. The overriding concern is to see and avoid obstructions, terrain and other aircraft. Air Methods pilots who plan changes while on the ground at an intermediate stop will follow the flight planning procedures outlined in this section.

3.13.1 MOC and ROC Weather Minimums

If operating on an airport in a movement area during hours of operation for an airport traffic-control tower, prior approval before helicopter movement is required. If working in an uncontrolled environment, make calls in the blind on an appropriate frequency to alert other pilots of your intentions.

For the purpose of this section, aircraft operations include, but are not limited to, hover taxiing the aircraft to reposition it for maintenance or hovering the helicopter for main rotor track and balance.

NOTE The aircraft may not leave the ground with a discrepancy, with the exception of troubleshooting an aircraft system by an aviation maintenance technician. Maintenance ground runs may be performed as necessary, providing the aircraft does not leave the ground.

The ceiling and visibility requirement (1,000 feet and three miles) applies only when a maintenance check flight is required after completing maintenance ground run requirements and does not limit ground operations.
3.13.2 Weather Minimums Clarification Table
Table 2 is not all inclusive and serves to list examples only.

Table 2 Weather Minimums Clarification

<table>
<thead>
<tr>
<th>Type of Operation</th>
<th>Examples</th>
<th>Minimums (Ceiling/Visibility)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground operations</td>
<td>• Leak checks</td>
<td>None/none</td>
</tr>
<tr>
<td></td>
<td>• Ground track and balance</td>
<td></td>
</tr>
<tr>
<td>Hover taxiing</td>
<td>• Reposition aircraft < 300 feet from point of origin</td>
<td>300 feet and 1/2-mile</td>
</tr>
<tr>
<td></td>
<td>• Hover track and balance</td>
<td></td>
</tr>
<tr>
<td>Forward flight</td>
<td>• Restricted operational check (ROC); restricted to daytime only</td>
<td>1,000 feet and 3 miles</td>
</tr>
<tr>
<td></td>
<td>• Maintenance operational check (MOC); may be performed during daytime or at night</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• In-flight track and balance</td>
<td></td>
</tr>
</tbody>
</table>
4 Flight Operations – Fixed-Wing Specific

4.1 Airport Surface Operation
For single-pilot operations, the pilot’s full attention must remain on taxiing the airplane during ground movement. The checklists and associated flows for single-pilot airplanes are designed so that none of them need be done while the aircraft is in motion. An airport taxi diagram will be used for all ground taxi operations.

Two-pilot operations have additional options. Two-pilot crews can safely conduct flows and checks during aircraft surface movement using one of the following techniques, whenever a checklist or associated flow pattern requires the PF to look inside the cockpit to locate a particular switch or control.

- Ask the PNF to set the switches or controls required by the flow pattern.
- Transfer control of the aircraft to the PNF while the PF accomplishes a necessary flow.
- Request the PNF to delay accomplishment of the checklist until the aircraft has been moved to a position where one of the preceding tactics can be adopted.

4.2 Cold Weather and Ground Icing
[135.227]
The following procedures for operating airplanes in ground icing conditions will be followed, to meet the clean aircraft requirement of 14 CFR 135.227(b)(1).

4.2.1 Cold-Weather Pre-flight Inspections
The normal pre-flight inspection should detect accumulation of frozen contaminants on fuselage, leading edges, and upper and lower surfaces of wings and the horizontal stabilizer, as well as on the leading edge and sides of the vertical stabilizer. Additional areas needing special attention are listed below.
PC12

In addition to the normal pre-flight inspection, the following areas on a PC12 require special attention.

- Control surfaces and control hinge points
- Flaps
- Propeller blades and spinner
- Engine inlet areas
- Windshields and cockpit windows
- Antennae
- Pitot tubes, AOA probes, and temperature probes
- Fuel tanks, caps, and vents
- Cooling air intake and exhausts
- Landing gear assemblies and wheel wells
- Brakes and tire-to-ground contact (for possible freezing)
- Undiluted isopropyl alcohol may be applied to the outer diameter of the brake assembly to free or prevent frozen brakes.

King Air series

In addition to the normal pre-flight inspection, the following areas on a King Air series airplane require special attention.

- Control surfaces and control hinge points
- Flaps
- Propeller blades and spinners
- Engine inlet areas
- Windshields and cockpit windows
- Antennae
- Pitot tubes and temperature probes
- Fuel tanks, caps, and vents
- Cooling air intakes and exhausts
- Landing gear assemblies and wheel wells
- Brakes and tire-to-ground contact (for possible freezing)
4.2.2 Removal of Frost, Ice, or Snow

No Air Methods pilot may takeoff an airplane that has frost, ice or snow adhering to any propeller, engine nacelle, wing, control or stabilizing surface, or any sensor for airspeed, altimeter, rate of climb, or flight attitude instruments.

Frost, ice, or snow may be removed from Air Methods airplanes using one of the following general techniques.

- The pilot or mechanic may have the airplane placed in a heated hangar at least long enough to melt the frozen contaminant. At this point, the pilot may choose further storage to allow for evaporation of the liquid water on the airplane or use mechanical means (brooms, squeegees or cloths, among others) to remove the residual liquid.
- The pilot or mechanic may directly remove all frozen contaminant using mechanical means such as brooms, squeegees, ropes, or large cloth strips, among others.
- The pilot or mechanic may use a hand sprayer to apply freezing point depressant (FPD) fluid to remove frost; the pilot may also use FPD applied in this manner to remove small amounts of residual snow or ice, following removal of most of the snow or ice using the heated hangar or mechanical methods.
 - Only SAE Type I (AMS 1424) fluid will be used. This fluid specification is approved by POH for both the PC12 and King Air series airplanes.
 - FPD fluids may be identified by color
 - Type I is generally dyed orange
 - Type II and Type III are generally dyed yellow
 - Type IV is generally dyed green
 - Sprayers containing fluid may be carried aboard the airplane if properly secured.
 - The applied fluid will have a concentration such that its freezing point is 10°C below OAT or lower (minimum temperature buffer of 10°C).
 - The fluid will be applied to all surfaces (including wings, fuselage, engine nacelles, and empennage) where snow, ice, or frost adheres.
• The pilot or mechanic may obtain an application of freezing-point depressant (FPD) fluid from an FBO or other air carrier facility. Before application, the pilot or mechanic will determine the type of fluid to be used and its concentration. All applications of fluid will be done with engines shut down and propeller rotation stopped. Only SAE type fluid will be used.
 – For the PC12, the temperature of the applied fluid shall not exceed 70°C (160°F).
 – For the King Air series, the recommended maximum is 93°C (200°F).
 – FPD fluids may be identified by color
 • Type I is generally dyed orange
 • Type II and Type III are generally dyed yellow
 • Type IV is generally dyed green

4.2.3 Fluid Deicing Procedure

4.2.3.1 General
When frozen contaminant is limited to residual ice on leading edges of wings and/or stabilizers, it may be removed by mechanical means or by application of FPD fluid to only the affected areas. In this case, if neither frost nor precipitation is occurring, the surfaces may be deiced in any order.

When using mechanical methods or applying FPD fluid for removal of snow, ice, or frost during conditions conducive to the formation of frost or while precipitation is occurring, the pilot will ensure that the representative surface that will be observed during the pre-takeoff contamination check is the first area of the airplane that is deiced. This will ensure that the remainder of the aircraft is at least equally free of contaminant. For the PC12, the representative surface is the left wing. For the King Air, the representative surface is the left wing and engine nacelle.

Deicing of the wings should begin at the leading edge wing tip, sweeping in the aft and inboard direction. If ice accumulation is present in the control surface cavities, it may be necessary to spray from the trailing edge forward.

Tail surfaces should be deiced in a similar manner to the wing. For the PC12, setting the stabilizer trim to a nose-down position will facilitate both deicing and subsequent inspection. Propellers should be deiced in the static mode, making sure that all blades are equally clean.
The fuselage should be deiced from the top down. Any fluid remaining on cockpit window should be removed to maintain optimal visibility. Passenger and cargo doors may require deicing to ensure proper operation.

Deicing fluid should not be applied directly to static ports, pitot heads, AOA probes or cockpit windows, or air intakes.

Minimal amounts of deice fluid should be used to deice engine external areas, avoiding the engine air inlets. Fluid residue that reaches engine compressor blades can reduce engine performance or cause stalling or surging. It could also result in glycol vapors entering the cabin via the bleed air system. Engine intake areas should be inspected for ice accumulated in flight immediately after shutdown. Any accumulation should be removed while the engine is still warm and before the installation of inlet plugs or covers. A light coating of deice fluid to the covers will help prevent them freezing to the nacelle.

4.2.3.2 Pilot or Mechanic Applied Deice Fluid

SAE Type I (AMS 1424) FPD is nonhazardous and may be carried aboard the aircraft in a hand sprayer, in a properly secured fashion.

Some Type I fluids are ethylene glycol compositions, whose minimum freeze point is achieved at a mixture of about two parts fluid and one part water. This is called the eutectic point of the mixture. Decreasing or increasing the fluid concentration from this point raises the freezing point of the mixture.

Other Type I fluids use propylene glycol, which does not behave in this fashion. Increasing the concentration of the fluid makes the freezing point continue to drop; however, the amount of decrease in freezing point of the mixture is very small after the ratio of two parts fluid to one part water is reached. In addition, concentrations of propylene-glycol-based fluids above 88 percent become very viscous at OAT of -10C or less, and residual fluid could produce substantial lift reductions.

IMPORTANT The recommended ratio for all Type I (AMS 1424) fluids is two parts fluid to one part water.

To ensure the proper mixture, the pilot or mechanic must load an empty sprayer with concentrated (neat) FPD fluid only, from a warm storage location, before departure. If practical, the container must be insulated to maintain its temperature.
The sprayer must be loaded to no more than two-thirds of its capacity. The pilot or mechanic must then add heated water, in an amount equal to half the amount of fluid in the sprayer. At any time the sprayer needs refilled, the residual diluted fluid must be discarded and the above mixing process repeated.

4.2.4 Post-Deicing Inspection
The pilot or mechanic will inspect the aircraft following deicing to ensure complete removal of contaminants, as specified below.

PC12
After deicing a PC12, the following must be inspected.

- Wing leading edges, upper and lower surfaces, and aileron surfaces (including wing seals)
- Horizontal stabilizer leading edges, upper and lower surfaces, and elevator surfaces (particularly at the balance horns)
- Vertical stabilizer and rudder side surfaces
- Flaps
- Propeller
- Engine, oil cooler, and ECS intakes
- Initial separator and screen
- Fuselage
- Antennae
- Windshields and cockpit windows
- Static ports, pitot tubes, AOA probes, and temperature probes
- Fuel tanks and vents
- Landing gear and wheel wells

King Air series
After deicing a King Air series airplane, the following must be inspected.

- All external surfaces, for residual ice and/or snow
- Antennae
• Windshields and cockpit windows
• Control surface gaps and hinges; control surfaces shall be moved to verify unrestricted movement
• Static ports, pitot tubes, temperature probes
• Fuel tanks and vents
• Engine inlet areas
• Air inlets and exhausts for oil coolers, generator cooling, or cabin air conditioning
• Landing gear: landing gear doors, wheel wells, and micro-switches

4.2.4.1 Pre-takeoff Contamination Check
The pre-takeoff contamination check will be performed to ensure wings and control surfaces are free of frost, ice, and snow; the check must be completed within five minutes prior to takeoff. The pre-takeoff check for all airplanes will be done as follows:

• As close as possible to the takeoff runway hold-short line, the pilot will verify that takeoff will be possible within five minutes, taking into account any likely ATC or traffic delays.
• The pilot or mechanic will then observe as much of the left wing (and engine nacelle and propeller spinner, in the case of King Airs) as possible, and check for any visible accumulation of frost, snow, or ice. If any is observed, the pilot will return to the ramp for further removal or to delay or cancel the flight.
• If a freezing-point depressant (FPD) fluid has been applied, the pilot or mechanic will similarly check for accumulation of frozen hydrometeors, and note the appearance of any residual fluid. A shiny appearance indicates continued effectiveness of the FPD fluid. A dull appearance indicates loss of fluid effectiveness.
• If either accumulations of contaminant or loss of fluid effectiveness are observed, the pilot will return to the ramp for reapplication, to perform one of the other possible methods of removal listed above, or to delay or cancel the flight.
• Holdover Time (HOT) Tables
• Holdover Time (HOT) Tables
 – The Air Methods program described above uses the defined pre-takeoff contamination check for verification of a clean aircraft; therefore, HOT tables are not used in a controlling fashion (to determine either a “go” or “no go”) under Air Methods’ program.
 – Holdover time tables are published by SAE and the FAA, and are used in ground-icing programs approved under 14 CFR 121.629(c) to verify that the aircraft is free from frozen contaminants at the start of the takeoff roll. HOT tables can be a valuable tool in planning the procedure for start and taxi under the temperature-and-precipitation conditions at the time of departure. For your reference only as a planning aid, a current HOT table is available on the intranet.

4.3 Airplane Trip Sheet and Load Manifest

NOTE When applicable per GOM Section 2.23, “Fueling” on page 65, pilots will document the completion of a Fuel Quality Manual “Appearance Test (AT)” in the remarks section. Example: “AT complete, initials.”

An Airplane Trip Sheet – FO-5211 form must be carried in each airplane and prepared before each departure. The fillable form is available on > Flightdeck > Resources > Corporate Forms (AMC).

A trip includes all the legs flown for a single purpose, such as the transport of a patient (or multiple patients being billed as one transport), maintenance flight, ferry flight or training flight. Usually, each trip will be assigned a unique trip or flight number. The following shall be recorded on the Trip Sheet.

• Flight number
• Date, aircraft N-number, and model designation
• PIC and SIC name (last name, first initial)
• PIC and SIC certificate numbers, followed by certificate type (for example, 1234567 ATP)
• Number of passengers on each leg
• Airport identifier for origin and destination of each leg (for example, KAPA, E91, 8TE5)

• Multiple landings, if applicable (such as might occur during training flights), shall be totaled in the remarks block for each leg

Four times shall be entered for each flight leg, as follows:

• Out (time the airplane starts taxi for takeoff)
• Off (time the airplane takes off)
• On (time the airplane touches down at destination airport)
• In (time airplane comes to a stop on ramp at destination airport)

Hobbs meter readings may be recorded (in addition to the above, required, time entries) if approved in accordance with this manual. Times shall be noted in the local time of the base from which the trip originates. This applies to all legs of the trip, including those that begin or end in a different time zone.

The result of the pilot’s risk assessment shall be entered for each flight leg. For each leg, the following difference shall be computed and entered (in minutes) in the appropriately labeled spaces, as follows:

• Time In minus Time Out = Block Minutes
• Time On minus Time Off = Flight Minutes

When entering the leg in the Pilot 411 Pilot Log, the pilot shall enter the Off time (as defined above) in the Pilot Log space labeled **Start Time**. The pilot shall enter the On time (as defined above) in the Pilot Log space labeled **End Time**. The pilot shall enter the Block Minutes (as computed above) in the Pilot Log space labeled **Block Time**.

When entering the leg in the 411 Pilot Log, the difference between Block Minutes and Flight Minutes, as computed above, will be entered in the Pilot Log space labeled: “Block Time.”

Takeoff weight and max weight will be entered for all legs. The only exception will be for maintenance, training, ferry, and reposition legs with only Air Methods employees on board, which are considered Part 91 flights.
For Part 91 legs, “Part 91” will be written in the weight-and-balance portion of the Trip Sheet. Additionally, the purpose of each Part 91 leg (training, maintenance, ferry, or reposition flights with Air Methods employees) will be entered in either the Remarks or the weight-and-balance section of the Trip Sheet.

The CG entries apply only to multi-engine aircraft. All blocks of this section will be filled out (e.g., Fwd. Limit, Actual CG, Aft Limit, and Max Weight for the flight).

The only legs that will be operated under 14 CFR Par 91 are those for maintenance, training, ferry, and reposition with only Air Methods employees aboard. All other flights will be considered Part135 and all applicable elements of weight and balance shall be recorded on the Trip Sheet before takeoff.

NOTE The PIC must still determine weight-and-balance information for each leg, to ensure compliance with limitations listed in the aircraft flight manual. Recording the results, however, is mandatory only for Part 35 legs.

The PIC’s signature at the bottom of the Trip Sheet constitutes verification of aircraft airworthiness and is completed before engine start.

The aviation manager or his designee (usually the night shift duty PIC) will audit the Trip Sheets for each calendar day to ensure accuracy of the Pilot 411 DFL, before closing out the DFL on the Pilot 411 system.

The paper copy of the DFL will be carried aboard the fixed-wing aircraft during flights and a completed copy will be kept on file at the base, in a consistent and commonly known location to expedite access by pilots and mechanics, for not less than 30 days. On the third and eighteenth of each month, the DFLs will be scanned or converted to a PDF file and forwarded electronically to the chief pilot, using the appropriate 135forms@airmethods.com email address and proper naming convention. Electronic copies of DFLs will be kept at the main office for 30 days after the creation date to satisfy the requirement to keep a duplicate copy of the load manifest.
4.4 DFL Procedures and Trip Sheet for Wheeled Aircraft

A copy of each Trip Sheet will be taken aboard the aircraft during the flight, and the completed form will be kept on file at the local Air Methods base for not less than 30 days. This, along with the closed-out Pilot 411 DFL satisfies the requirement for keeping a duplicate copy of a load manifest. The Trip Sheet satisfies all the requirements of a load manifest if the weight-and-balance section is completed as instructed above.

When the Pilot 411 DFL has been closed out at the end of the calendar day, the person who closes it out shall print it out and file it, along with the day’s Trip Sheets at the base in a consistent and commonly known location for access by pilots and mechanics. The day’s total time in service (along with starts, landings and other required data) will be taken from the printed Pilot 411 DFL and used to update the airplane maintenance log.

4.5 LAHSO (Land and Hold Short Operations)

LAHSO includes landing operations to hold short of intersecting taxiways and landing operations to hold short of designated points on the runway.

Additional information is available in the Aeronautical Information Manual and in Operations Specifications, Paragraph A027.

4.5.1 Performance: Landing-Distance Information

Using the performance data in the appropriate POH/AFM, select the temperature and airport elevation closest to, but greater than existing conditions at the landing airport. Use the zero wind (zero KTS) numbers when the reported wind yields a headwind component greater than or equal to zero.

The following procedures and the associated training module will enable pilots to quickly and accurately determine whether aircraft performance, existing weather, and runway conditions permit compliance with a particular LAHSO clearance. The procedures ensure that the LAHSO clearance may be carried out safely and with adequate performance margin.
4.5.2 **Planning: Available Landing Distance (ALD) Measured Distance**

- Determine from the runway information section of the airport listing in the Airport/Facilities Directory (AFD) whether the destination airport has a designated LAHSO runway operation. If it does, note the ALD for the runway most likely in use at the ETA and other possible runways.

- Landing distance will be the FAA-approved Aircraft Flight Manual (AFM) distance plus 1,000 feet for the configuration, environment, and weight actually used for landing. In no case shall LAHSO be conducted to a runway distance less than specified for an aircraft type as identified in FAA Order 7110.118, Appendix 1. A LAHSO clearance may be accepted if the ALD is greater than the resulting distance.

- LAHSO clearances may be accepted when wake turbulence considerations demand a long landing. Pilots will determine the available landing distance between the modified touchdown point and the hold short point.

4.5.3 **Limitations**

- LAHSO clearances may not be accepted when a tailwind exists.
- LAHSO clearances may be accepted only on dry runways.
- LAHSO clearances may not be accepted on wet or icy runways.
- LAHSO clearances may not be accepted to a runway that does not have visual or electronic vertical guidance.
- LAHSO clearances may not be accepted when Wind shear has been reported within 20 minutes of the time a landing clearance is issued.
- LAHSO clearances may not be accepted when weather conditions dictate a final approach speed greater than VREF (for actual landing weight) plus 10 knots.
- LAHSO clearances may not be accepted when less than full flaps are to be used for landing.
- LAHSO clearances may only be accepted if coordinated with the respective airport to ensure the airport is compliant with LAHSO operations. Pilots will ensure coordination by reviewing the AFD for LAHSO information, monitoring ATIS for information and complying with ATC instructions.
4.6 Loading and Unloading Patient/Passenger

The PIC will ensure that the engines are shut down and propellers stopped before allowing patients/passengers or medical personnel/crewmembers enter or exit the airplane.

The pilot will participate in the loading process, and is, in fact, the one responsible for managing and directing the process. In single-pilot operations, the pilot will determine whether to assist from inside the airplane or outside the airplane. Among other things, the pilot will consider his ability to direct and may take into consideration any patient concerns that medical personnel may have. Although the patient’s medical concerns are important, the pilot’s first responsibility, during the loading process, is to ensure the safety of those involved and of the airplane. This is of paramount importance when determining position for loading.

4.7 Operations from Unimproved Airports

In general, pilots must choose the best airport for the mission at hand. There are many possible criteria for establishing the suitability of an airport. The first two, which are inviolate, are safety and legality. Neither medical necessity nor enhancement of efficiency can override these two considerations.

Some considerations for determining an airport’s suitability are its location relative to high terrain and other obstacles, runway size, runway surface, lighting, radio approach aids, and instrument approach procedures. Pilots must not allow proximity to the patient to outweigh the need to maintain safety and legality.

In remote areas, the only airport close enough to meet patient care requirements may be one without a paved runway. This is undesirable, since the condition of the surface is more difficult for the pilot to determine. Grass may be longer than it appears from traffic pattern altitude and it may conceal gullies, holes, or other irregularities that might damage landing gear or propellers. Gravel runways increase the possibility of FOD to turbine engines and of stones being thrown against or through aircraft skin. Airplane operations from unpaved landing areas are not prohibited, as long as they are not contrary to any other guidance in this manual, Operations Specifications, or CFRs. Such operations must also comply with all sections of the appropriate POH or AFM, with special attention to Limitations and Performance sections.
The following are areas of particular concern for operations from unpaved airports and practices that can mitigate the associated risk of these operations.

- Pilots shall derive takeoff and landing performance figures used to determine unimproved airport suitability from the POH or AFM performance charts. To be considered suitable, an unimproved runway/landing area must be at least as long as the longer of the following two distances.
 - 1.5 times the all-engine takeoff distance, ground roll only
 - 1.5 times the normal flap-up, no reverse landing distance
- Braking action may be substantially degraded if the runway surface is other than paved and dry. This may occur with loose gravel or with grass wet with rain or even just early morning dew. POH or AFM data for accelerate-stop distance is often predicated on operation from a runway that is paved, level, and dry. Landing distance data assumes the same conditions, along with maximum braking. Crews considering an operation from an unimproved runway must examine carefully the associated conditions on performance charts and search for any published distance increase factors for degraded surface conditions.
- An airport with no hard-surfaced runway is unlikely to be fenced. Combined with infrequency of use, this increases the likelihood of livestock or other large animals being on the landing area.

When possible, pilots should request that ambulance crews or other public safety personnel drive the runway/landing area, using lights and sirens to haze animals away from the runway environment.

A gravel runway that is firm during dry conditions may become soft after spring melting or following periods of precipitation. Pilots should expect the surface to be more variable than a paved one. Even when the runway/landing area has been constructed in a manner to reduce these effects, off-runway movement and parking areas may not be as well prepared and should be used with caution.

An unimproved airport is often without lighting. Crews need to be aware of the requirements of 14 CFR 135.229. The runway or landing area must be marked with boundary or runway marker lights. Vehicle lights at the runway ends are not sufficient. Air Methods has no approval to use flare pots or lanterns for night illumination of runway/landing areas. After landing on an unlighted runway near the end of the day, a pilot may want to consider making a special arrangement with the medical personnel/crewmembers if they cannot return with the patient in time to depart before dark. This would probably involve repositioning to a lighted airport.
As with all flights, the pilots need to gather all information required to conduct the proposed operation safely. Each base can compile a list of contacts, including airport managers or other people who live near the airport and could provide pre-flight information on airport conditions. Law enforcement, fire, or EMS personnel may be instructed on how to make such observations. Pilots can ensure the quality of information obtained from non-aviation personnel by asking specific questions that elicit quantitative, rather than qualitative answers. In any case, pilots need to remember that information from non-aviation personnel may be distorted by the source’s lack of familiarity with aviation concerns and by a high level of commitment to complete the mission. Pilots must, therefore, regard such information as general in nature, only, and verify it with more reliable sources whenever possible.

Entering the traffic pattern on an upwind leg abeam the runway will give more time to detect visually any surface problems. If necessary, this can be augmented with a low pass down or immediately adjacent to the runway/landing area. Pilots will comply with the minimum altitude requirement of 14 CFR 91.119 during this operation. The pilot will also employ the practices of the circling maneuver (as delineated in the Training Program) to ensure maintenance of safe altitude and airspeed while maneuvering clear of obstacles and traffic.

When contemplating an operation to an unimproved airport for which a base has no information, a pilot can conduct an advanced ground inspection of that airport. This can precede a PR or training mission.

In some cases, other management personnel may want to specify that each pilot must receive training at a particular unimproved airport before flying a mission there.

The regional aviation manager or the program aviation manager should consider seasonal inspections of anticipated unimproved airports. At a minimum, they should evaluate snow depth and mud conditions during winter months. In spring or summer months, they should initiate surveys for mud, ruts, potholes, and grass length.

In order to reduce the chance of FOD to turbine engines, propeller blade erosion, or aircraft skin damage, crews must avoid static run-ups or systems checks on unpaved surfaces. For similar reasons, pilots must consider whether runway length is sufficient. When available and aircraft performance allows it, and if the POH or AFM permits it, pilots must deploy ice vanes or inertial separators for ground operations, takeoff, and landing, to reduce further risk of FOD. Pilots must use propeller reversing sparingly.

Instructors will review soft-field takeoff and landing procedures during training of pilots assigned to bases where use of unpaved runway and/or landing surfaces is likely.
4.8 Special Visual Flight Rules (SVFR) [91.157]

Airplane pilots may conduct SVFR operations in conditions lower than those contained in 14 CFR 91.155, subject to the following requirements and weather minimums.

- Pilots must conduct SVFR operations below 10,000 feet MSL.
- A pilot must receive an ATC clearance before conducting an SVFR operation.
 - Note, however, that the SVFR clearance is effective only within the airspace contained by the upward extension of the lateral boundaries of the controlled airspace designated to the surface for an airport. After an aircraft leaves the Class B, C, D, or E surface area, ATC provides no separation and the flight must observe the visibility and cloud requirements of 14 CFR 91.155.
 - Pilots must conduct flight under SVFR clear of clouds and with a minimum flight visibility of one statute mile. For takeoff and landing, reported ground visibility must be at least one statute mile.
- From sunset to sunrise, airplane operations under SVFR require the airplane and pilot to be equipped and qualified for flight under IFR.
5 Maintenance Operations

5.1 Aircraft Airworthiness Check

All aircraft will have an airworthiness check performed by a company mechanic in accordance with the applicable Approved Aircraft Inspection Program (AAIP) airworthiness check. If this section is not available within the AAIP, the mechanic will use the Air Methods Pre-flight/Airworthiness Checklist including the supplemental checks. If these are not available, the pre-flight section of the appropriate approved pilot operating handbook (POH) or approved flight manual (AFM or RFM) shall be used. This shall be performed on days the aircraft is in service, at a minimum of three times a week (defined as Sunday through Saturday) with the recommended schedule of Monday, Wednesday, and Friday. It is expected if a base mechanic is physically present, this check shall be performed by the mechanic each flight day. The mechanic shall also meet with the duty pilot to review the Aircraft Status Report to include any pen-and-ink changes to ensure awareness of items coming due. Pilots and mechanics must concur that all items coming due are noted on the Aircraft Status Report. This check shall include an entry made in the aircraft logbook. The logbook entry shall include the following:

- (Date) (total time) “Performed aircraft airworthiness check in accordance with (aircraft model) AAIP, AMC Pre-flight/Airworthiness Checklist or (applicable RFM), Aircraft Status Report reviewed, no defects or discrepancies noted. (signature) (cert. type and number)”

- If maintenance discrepancies are identified during the airworthiness check, an appropriate logbook entry shall be made by the individual who made the discovery and an appropriately rated mechanic contacted to perform corrective action.

- If discrepancies are identified during an Aircraft Status Report review, the aircraft shall immediately be removed from service until an appropriately rated mechanic resolves the discrepancy.

In the absence of a company mechanic, the pilot’s pre-flight shall be the equivalent of an aircraft airworthiness check. The pilot shall record the pre-flight/airworthiness check by signing the appropriate section of the Daily Flight Log. The pilot shall use the applicable AAIP (airworthiness check) or, if this section is not available within the AAIP, the pilot will use the Air Methods Pre-flight/Airworthiness Checklist including the supplemental checks.
If these are not available, the pre-flight section of the appropriate approved pilot operating handbook (POH) or approved flight manual (AFM or RFM) shall be used. This check shall include a review of the Aircraft Status Report.

5.2 Maintenance and Mechanical Difficulties
[135.23(f), 135.65(a)(b)]

Scheduled, routine maintenance and mechanical discrepancies are entered in the aircraft logbook by an appropriately rated pilot or mechanic who discovers the discrepancy before starting any maintenance. If a discrepancy occurs, however, the mechanic assigned to that aircraft shall be notified as soon as practical.

If maintenance discrepancies are identified during the airworthiness check, an appropriate logbook entry shall be made by the person who made the discovery and by an appropriately rated mechanic contacted to perform corrective action.

If discrepancies are identified during an aircraft status report review, the aircraft shall immediately be removed from service until an appropriately rated mechanic resolves the discrepancy.

No person may operate any aircraft that has undergone maintenance, preventive maintenance, rebuilding, or alteration unless both of the following conditions are met:

- The aircraft has been approved for return to service by a certified A&P mechanic or an FAA-certified repair station holding the proper rating.
- The maintenance-record entry required by 14 CFR Part 43.9 (content, form, and disposition of maintenance, preventive maintenance, rebuilding, and alteration record for inspections) has been made.
5.3 Maintenance Operational Check

[91.417, 135.413]

No person may operate any aircraft that has undergone maintenance, preventive maintenance, rebuilding, or alteration unless the following requirements are met.

- It has been approved for return to service by a certified A&P mechanic or an FAA-certified repair station holding the proper rating.
- The maintenance record entry required by 14 CFR 43.9 (content, form, and disposition of maintenance, preventive maintenance, rebuilding, and alteration record for inspections) has been made.
- No pilot may carry any person (other than required crew members) in an aircraft that has been maintained, rebuilt, or altered in a manner that may appreciably have changed its flight characteristics or substantially affected its operation in flight until a maintenance operational check flight is conducted only by designated pilots in command (who have current 14 CFR 135.293(a)(b) check in the make and model aircraft requiring the MOC or a pilot approved by the company) and logs the flight in the aircraft records.

Maintenance operational check flights will be accomplished any time it is required by the manufacturer or by regulation in accordance with the aircraft maintenance manual and the aircraft flight manual. Some manufacturers have specific checks to follow, including specific documents and/or checklists to complete. If a manufacturer has these requirements, they must be followed for the specific work performed. The documents and/or checklists are to be completed and submitted with the logbook entry.

Maintenance operation check-flights will be conducted only in VFR conditions with the ceiling and visibility at or greater than 1,000 feet and 3 miles, respectively.

See “MOC and ROC Weather Minimums” on page 123 and “Weather Minimums Clarification Table” on page 124 for weather requirements for MOCs and ROCs ground runs and hover reposition flights.

The aircraft does not have to be flown as described in the above paragraph if, before flight, ground tests, inspections, or both show conclusively that the maintenance, preventive maintenance, rebuilding, or alteration has not appreciably changed the flight characteristics or substantially affected the flight operation of the aircraft (ref. 14 CFR 91.407(c)).
5.3.1 MOC and ROC Differences

Maintenance operational checks and restricted operational checks are different activities, as follows:

- Maintenance operational checks can be performed by any pilot current and
 qualified in the airframe.
- Restricted operational checks can be performed only by a pilot who is current
 and qualified in the airframe and has completed the training and checks for
 functional checks requiring written authorization to be performed. The training
 and checks can be provided only by a training captain or a check pilot who has
 been designated by the chief pilot to conduct those checks.
- MOCs may be conducted at night provided that the flight is conducted with night
 vision goggles or a conditional flight release. ROCs may not be conducted after
 local sunset or before local sunrise. Ground runs may be performed as long as
 there is no intention to fly.
- ROC training will be documented on a training form (TF108) by a check pilot
 stating “ROC training completed, pilot recommended for ROC flight
 operations.”

Any pilot who is not comfortable with conducting an MOC or an ROC shall not conduct the flight
and shall contact his regional management. Regional management will arrange for another pilot to
conduct the flight.

For procedures see the “Maintenance Operational Check – Post-Maintenance” on page 80 section
in this manual.

5.4 Mechanical Interruption Summary Report (MIS)

Each certificate holder shall submit to the Administrator, before the end of the tenth day of the
following month, a summary report of the previous month of each of the following:

- Interruption of a flight, unscheduled change of aircraft enroute, unscheduled stop
 or diversion from a route caused by known or suspected mechanical difficulties,
 or malfunctions that are not required to be reported under 14 CFR 135.415.
• Number of propeller featherings in flight, listed by type of propeller and engine, and aircraft on which it was installed. Propeller featherings for training, demonstration, or flight check purposes are not reported.

These reports are applicable only to multi-engine aircraft.

In the event that one of the above situations occurs, the PIC will complete Sections 1 and 10 of the Mechanical Interruption Summary Report – FO-5158 as soon as practical after the event, but not to exceed 12 hours. The fillable form is available on > Flightdeck > Resources > Corporate Forms (AMC).

When complete, the PIC will forward the report to the mechanic responding to the mechanical interruption in Word format from the company email. Once the corrective action has taken place, the mechanic shall complete Block 11 of the MIS report and forward to the appropriate regional maintenance manager (RMM) and Regional Maintenance Director (RMD). The RMD will ensure that the entire form is completed correctly, the RMD or RMM will fill in the “Reviewed By” box, and forward to the director of maintenance. This form is to remain in Word format through the entire process, attached to and forwarded on, utilizing the original PIC email.

5.5 Minimum Equipment List (MEL)

The CFRs require certain equipment to be operative for a given type of aircraft operation. However, the MEL provides for relief from these requirements under certain conditions.

All components and systems on an aircraft fall into three classes in regard to airworthiness requirements, as follows:

- **Class 1** – Units obviously required for an aircraft to be airworthy, such as tires, primary control systems, wings, and items required by CFRs original certification (First Aid Kits, etc.). These are generally not included in the Minimum Equipment List.
- **Class 2 (Nonessential furnishings, NEF)** – Units obviously not required for aircraft to be airworthy, such as cabin trim, curtains, pillows, etc. These are not included in the Minimum Equipment List, but may be included in the Air Methods NEF Program.
- **Class 3** – Units which do not clearly fall into either of the above classes or for which some relief from the normal complement of equipment has been approved.
The Minimum Equipment Lists contain Class 3 items in the third category, for which some relief from the normal complement of equipment has been approved.

The MEL does not include every piece of equipment or system in the aircraft. When no specific mention is made the equipment must be operative unless it falls under Class 2.

Should any doubt exist as to the interpretation of the MEL or the proper class of the item, assistance may be obtained from the director of maintenance, Maintenance Control and Support or his designee.

NOTE The term *airport where repairs or replacements can be made* is defined as a maintenance station where Air Methods maintenance personnel are normally on duty and where the necessary parts and required equipment are available. The maintenance support representative, regional maintenance director, or director of maintenance is authorized to deviate from this provision, subject to agreement with the PIC. The director of maintenance, maintenance support representative, or designated representative is responsible to exert all efforts to correct such items at the first available opportunity.

5.5.1 Releasing Aircraft with Inoperative Equipment

Air Methods aircraft that have an approved MEL are listed in Air Methods Operations Specifications D095.

When releasing aircraft with inoperative equipment, a certified A&P mechanic or FAA certified repair station holding the proper rating shall follow the procedures outlined in this manual and determine, with the pilot, whether the deferral or deferrals render the aircraft unairworthy. The pilot and mechanic, before further flight, shall ensure that any interface or interrelationship between inoperative systems or components will not result in degradation in the level of safety and/or an undue increase in flight-crew workload. The “Definitions” and “Preamble” of the MEL should be referred to as necessary (135.23(i) and 135.179).

The Minimum Equipment List is designed to provide relief for individual failures in non-related systems. In the event of multiple discrepancies, even though each in itself may be deferred, the interrelationship of the discrepancies and potential adverse effects on maintenance and safe operation must be taken into consideration. Good judgment must be exercised by personnel authorized to release the aircraft.
The director of maintenance or maintenance support representative may be contacted for additional guidance.

- Appropriate action must be taken to ensure that no secondary hazard can be introduced by an inoperative component. Such action may consist typically of removing the units involved, capping lines, disconnecting and securing electrical connections, plugs, circuit breakers, etc., to ensure complete isolation from the aircraft or associated systems as required.

- A careful review shall also be made by the PIC to ensure that such action does not conflict with Emergency Flight Procedures.

- Should a discrepancy occur when the aircraft is away from the normal base of operations or Air Methods maintenance personnel are not physically present at the base, the Air Methods pilot, any certificated A&P mechanic, or an FAA-certified repair station holding the proper rating may defer items in accordance with the procedures in Air Methods General Operations Manual.

5.5.2 Deferred Discrepancy Log and Logbook Entries

When an item is deferred, an entry must be made by the mechanic or pilot in the Discrepancy (left-hand) column of the Deferred Discrepancy Log – FO-5157. The Discrepancy section of the DDL must be completed in its entirety. The fillable form is available on > Flightdeck > Resources > Corporate Forms (AMC).

IMPORTANT

Mechanical discrepancies are be entered in the aircraft logbook by an appropriately rated pilot or mechanic who discovers the discrepancy.

All MEL items are categorized and the maximum time between deferral and repair for each category is as follows:

- **Category A** – These items must be repaired within the time limit stated in the remarks column.

- **Category B** – Items in this category must be cleared within three consecutive days (72 hours), not counting the day the item was discovered. For example, if an item is deferred on Monday, the item must be cleared by midnight on Thursday.
• **Category C** – Items in this category include all items which are not in categories A and B and those items which are not required by CFR to be operative at all times. Category C items must be cleared within 10 consecutive days (240 hours), not counting the day the item was discovered.

• **Category D** – Items in this category shall be repaired within 120 consecutive calendar days (2,880 hours), excluding the day the item was discovered.

NOTE Category A and D deferrals may not be extended.

<table>
<thead>
<tr>
<th>SYSTEM & SEQUENCE NUMBERS</th>
<th>1</th>
<th>2. NUMBER INSTALLED</th>
<th>3. NUMBER REQUIRED FOR DISPATCH</th>
<th>4. REMARKS OR EXCEPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. FLIGHT CONTROLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Force Trim C</td>
<td>1</td>
<td>0</td>
<td></td>
<td>* May be inoperative for VMC.</td>
</tr>
</tbody>
</table>

Place an “INOP” placard on or adjacent to the instrument or on the light switch, control, etc., when the aircraft is dispatched with the item inoperative. Reference the MEL and make notation in the logbook indicating system and sequence numbers for the inoperative unit. For example, the “force trim” is listed under System 27, Sequence 1.

- Appropriate entries shall be made in the aircraft logbook and on the Deferred Discrepancy Log. The aircraft must be appropriately placarded. Assistance in determining such action may be obtained from the director of maintenance, maintenance support representative, or their designee. The **Deferred Discrepancy Log – FO-5157** shall be scanned and sent, by email or fax, to Maintenance Control and Support within 24 hours of deferral. Per 8900.1, Vol 1, Ch 4, Sec 7, Par 4-799 B (8) (b), procedures for recording the following items have been developed.
 - An identification of the item of equipment involved
- A description of the nature of the malfunction
- An identification of the person making the entry
- The MEL item number for the equipment involved

- The pilot, any certificated A&P mechanic, or FAA repair station holding the proper rating will make the following or similarly worded entry in the airframe maintenance logbook deferring the discrepancy. Date / /. ACTT ________ (Item) INOP. Deferred in accordance with (aircraft type) MEL, Category (A, B, C, D, or NEF) expiration date / /_. (Signature) (Certificate type and number).

- When the indicating portion of an aircraft system or component is malfunctioning, it may be necessary to perform appropriate troubleshooting procedures to determine that the fault exists in the indicating system and not in the aircraft system or component, in order to properly apply the requirements of this section.

- The pilot may request equipment requirements above the minimums provided under this policy application or as specified in the Minimum Equipment List whenever, in their judgment, such added equipment is essential to the safety of a particular flight under those conditions prevailing at the time. Whenever this is necessary, a notation shall be made in the aircraft logbook indicating that this action was at the request of the pilot.

5.5.3 Deferral Procedures for Class 2 Items (NEF)

- An appropriately rated A&P mechanic or an appropriately rated pilot who discovers a discrepancy shall make an entry in the airframe maintenance logbook documenting the discrepancy.

- Discrepancies that do not affect the safety or airworthiness of an aircraft (cosmetic discrepancies, cabin trim, curtains, pillows, floor coverings peeling, cigarette lighter inoperative, etc.) may be deferred. The discrepancy must not be a grounding or safety of flight item, an item required by TC or STC, or an item for which there are damage or other limitations listed in an appropriate maintenance manual or other approved data.

- The NEF Program contains a list of items that are approved for Class 2 deferral; the list is located on the 135 Field Maintenance site on the Air Methods > FlightDeck. These items may be deferred by following the instructions under “Releasing Aircraft with Inoperative Equipment” on page 146.
• If the Item is not on the NEF list, an appropriately rated A&P mechanic shall contact the director of maintenance or designee to request authorization to defer a specific Class 2 NEF item. If approved, the director of maintenance or designee will advise the mechanic that the deferral is approved and will assign a date by which the discrepancy must be corrected.

Once approved, the appropriately rated A&P mechanic will make the following or similarly worded entry in the airframe maintenance logbook deferring the discrepancy.

• Date / / ACTT _________ Deferral of (this item) does not affect safety or airworthiness of the aircraft. Deferral of this item is authorized by (Name) (Title), AIR METHODS CORPORATION. This discrepancy shall be corrected on or before _/__/_. (Name) (Certificate type and number)

• Class 2 NEF items will be recorded on the Deferred Discrepancy Log. Extensions may be granted at the discretion of the director of maintenance or his designated representative.

• When the last deferral is closed, discard it locally provided it has been sent to and processed by Maintenance Control and Support.

5.5.4 MEL Disagreements
Any disagreements with the application of the MEL shall be resolved as follows:

• The pilot’s decision prevails.

• On a post-analysis basis, parties may submit reports indicating disagreement to the director of maintenance and director of operations for policy discussions.

5.5.5 Corrective-Action Requirements
Maintenance action must be taken to clear all MEL items at the first available opportunity. Maintenance shall correct the discrepancy restoring the system, equipment, or indicator to normal operating condition and remove the INOP placard. Maintenance shall make an appropriate entry in aircraft logbook. When a deferred item is cleared, an entry must also be made in the “Corrective Action” (right hand) column of the Deferred Discrepancy Log opposite the associated “Discrepancy”. The Corrective Action section of the DDL must be completed in its entirety by the mechanic clearing the deferral.
The Deferred Discrepancy Log shall be scanned and sent, by email or fax, to the Maintenance Control and Support no later than 24 hours after the corrective action. When all corrective actions of a Deferred Discrepancy Log have been completed and sent to the Maintenance Control and Support, the DDL may be discarded locally.

5.6 MEL Deferred Item Control

When an item is deferred, the A&P mechanic responsible for the deferral will notify Maintenance Control and Support no later than 24 hours after the deferral. Maintenance Control and Support shall record the deferral on the MEL Control Log.

The regional maintenance director or designee is responsible for coordinating with Technical Services, Maintenance Control and Support, and Flight Operations to clear deferred items within the specified time limit. This includes procuring the necessary parts, ensuring the availability of personnel and equipment, and scheduling the aircraft for the required maintenance.

5.6.1 Tracking MEL Deferrals

The senior manager of maintenance programs is to maintain an MEL Control Log used to track all MEL deferrals with the following pertinent information.

- Aircraft registration number, serial number, and model
- Discrepancy “(Item) INOP”
- MEL System and Sequence number
- Category
- Date deferred
- Date through which the aircraft may be operated with the MEL item deferred. (expiration date)
- Signature of the person deferring the item
- An electronic copy of the DDL while open
5.6.2 Extension of MEL Deferral Time Limits

No discrepancy may be deferred for more than the period specified in the applicable MEL without the specific approval of the director of maintenance or his designated representative. Following this specific approval, the mechanic will make an additional entry in the Corrective Action (right hand column) of the Deferred Discrepancy Log, listing the date and the time of the approval, a reference to the original discrepancy, and the reason for extending the discrepancy beyond the MEL-approved period. The original entry will then be rewritten in the first available discrepancy block with new dates reflecting the extension.

Air Methods is authorized by Operations Specifications to approve a single, one-time deferral extension to category B and C items, with subsequent notification to the FAA PI within 24 hours for aircraft listed in Air Methods Ops Specs D095.

If an additional extension is required after the single, one-time extension, it must be approved by the FAA Certification Management Team before the current extension expires. This authorization is to be used in unusual circumstances where the deferral deadline cannot be met; it is not to be abused or used indiscriminately to cover up poor maintenance practices, maintenance program shortcomings, or poor management.

The following procedures are used for deferral extensions:

- The maintenance support representatives (MSR) are to monitor the fleet MEL status daily during the normal work week. When the deadline for an MEL deferral cannot be met, the mechanic will scan and send, by email or fax, a completed MEL Deferral Extension – FO-5213 form to the MSR by noon (Mountain Time) of the working day before the deferral expires. The fillable form is available on > Flightdeck > Resources > Corporate Forms (AMC). The pertinent information regarding the MEL item is to be indicated on the form including the reason for the extension, relevant details regarding the circumstances necessitating the extension and extension time requested.
 - Section One: MEL Deferral Extension Information
 - When it is determined that the deadline for an MEL deferral cannot be met, the mechanic will complete Section One of form FO-5213 in its entirety.
 - Section Two: Acknowledgment Signatures
 - The mechanic will complete the first half of acknowledgment-signature boxes in Section Two, and then send the form to the MSR for processing.
• The MSR will have the materials supervisor or other department head sign the second half of Section Two: Acknowledgment of Internal Delays.

 – Section Three: Approval or Disapproval of Extension

 • For single, one-time extensions, the MSR shall review the extension and either approve or disapprove the request by completing Section Three.

 • For a subsequent extension after the single one-time extension, review the request to verify the reason (and determine the number of days specified in), but do not complete Section Three. Submit form FO-5213 to the FAA Principal Inspector (PI) for approval before the current extension expires. The FAA PI will review the request, approve or disapprove the extension by completing Section Three, and return the form to the MSR for distribution.

 – Section Four: MEL Disposition (MSR Use Only)

 • The MSR will disposition form 5213 as appropriate.

 • The director of maintenance, maintenance support representative, or designee will have the Materials Supervisor or other department head as appropriate (or their designee) sign the form, when appropriate, to ensure the department responsible for the delay in maintenance action is fully aware of their part in the MEL deferral process.

 • The director of maintenance, maintenance support representative, or designee shall review the single, one-time MEL deferral extension documented on the MEL Deferral Extension form and based on the completeness of the form and date documented, either approve or disapprove the extension requested.

 • If the request is denied, the director of maintenance, maintenance support representative, or designee denying the extension is to confer with the Mechanic requesting the extension as to the reason for disapproval and, if justified, can revise and approve the extension request.

 • The Maintenance Support Representative will update the MEL Control Log “Expiration Date”, “Extension Date”, and “Date MEL Removed” columns.

 • The Maintenance Support Representative is to distribute the approved, single, one-time extension form to the maintenance personnel responsible for the deferral. The mechanic responsible for the deferral shall attach a copy of the approved MEL Deferral Extension to the Deferred Discrepancy Log.
• The Director of Maintenance or their designated representative is to notify one of
the Principal Inspectors assigned to the Air Methods Certificate Management
Team within 24 hours subsequent to the approval of the MEL deferral extension.
This notification may be accomplished in one of the following ways:
 – Email, telephonic facsimile (fax), verbal notification by telephone, or
 mailed approval of MEL Deferral Extension form to the PI, their
 assistant, assigned PI or supervisor of these personnel.
 – Personal delivery of the approved MEL Deferral Extension form, to one
 of the above listed personnel at the local FSDO.
 – If the assigned FAA-PI cannot be notified within 24 hours subsequent to
 the extension approval due to normal work week weekend, holiday, etc.,
 the FAA-PI will be notified of the extension during the next normal
 business work day.
• If an additional extension is required after the single, one-time extension, the
 Maintenance Support Representative will review the request to verify the reason
 and determine the appropriate number of days of the additional request.
• The Maintenance Support Representative will submit the additional extension
 request to the appropriate FAA Principal Inspectors or designees for approval
 prior to the expiration of the current extension time period.
• If the additional extension is approved by the FAA Principal Inspectors, the
 Maintenance Support Representative will distribute and track the extension per
 the procedures for the single one-time extension.
• If the additional extension is not approved, the aircraft will be grounded until the
 deferred item can be repaired.
• If the aircraft is out of service and an extended MEL deferral is cleared after the
 expiration date, the Maintenance Support Representative will indicate the dates
 the aircraft was not operated at the bottom of the extension request form.
5.6.3 Procedures for Use of Minimum Equipment List

5.6.3.1 Initiating an MEL Item

<table>
<thead>
<tr>
<th>Role</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance/Pilot</td>
<td>Determines from MEL that aircraft may be operated in revenue service with the unit/system inoperative and/or removed as applicable.</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Confers with PIC to ensure agreement in interpretation.</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Determines parts required. Places appropriate Parts Request.</td>
</tr>
<tr>
<td>Maintenance (Only)</td>
<td>Performs applicable (M) maintenance procedure(s) as a requirement for flight as listed in the MEL.</td>
</tr>
<tr>
<td>Maintenance/Pilot</td>
<td>Makes proper logbook entry. And completes the Deferred Discrepancy Log. (Refer to applicable section of this General Operations Manual).</td>
</tr>
<tr>
<td>Maintenance/Pilot</td>
<td>Install an “INOP” placard on or near the deferred item.</td>
</tr>
<tr>
<td>Flight Crew</td>
<td>Performs (O) operations as a requirement for flight as listed in the MEL.</td>
</tr>
<tr>
<td>Maintenance/Pilot</td>
<td>Transmits the completed Deferred Discrepancy Log by email to Maintenance Support by email to AMSDMELFAX@airmethods.com or fax to (800-806-0151) that an MEL item was deferred.</td>
</tr>
<tr>
<td>Director of Maintenance or their designee</td>
<td>Review parts and corrective action required. Establish priority.</td>
</tr>
</tbody>
</table>
5.6.3.2 Clearing an MEL

<table>
<thead>
<tr>
<th>Regional Maintenance Director or their designees</th>
<th>Advise Technical Services of parts required for shipment to required base.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Maintenance Director & Materials Supervisor</td>
<td>Issue item to appropriate base for corrective action.</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Correct discrepancy restoring component, system, equipment, or indicator to normal operating condition.</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Make appropriate entries in aircraft logbook and DDL.</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Remove inoperative sticker from unit or control.</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Transmit a fax or email message using the Deferred Discrepancy Log to the Maintenance Support Representative confirming that item is cleared.</td>
</tr>
<tr>
<td>Maintenance Support Representative</td>
<td>Complete “Date MEL Removed” column on the MEL Control Log. Completes the bottom of the MEL Deferral Extension form and files with Deferred Discrepancy Log as necessary.</td>
</tr>
</tbody>
</table>
5.7 Obtaining Maintenance Away from Normal Base of Operations

[135.23]

It is Air Methods policy to have company mechanics perform all maintenance but reserve the right to allow maintenance to be performed by outside personnel when conditions or location make it impractical to be performed by company mechanics. A pilot in the field is instructed to first contact the regional maintenance manager or lead mechanic, who will make this decision and authorize outside repair.

If the regional maintenance manager or lead mechanic is not available, the pilot will contact the regional maintenance director. If the regional maintenance director is not available, then the pilot will contact the Air Methods director of maintenance.

In the event the Regional maintenance manager, lead mechanic, regional maintenance director, or director of maintenance is not immediately available, a pilot is authorized to have necessary work performed by a certified A&P mechanic or properly rated FAA-approved repair station that are monitored under an FAA-approved drug and alcohol program. The pilot must verify that the mechanic or repair station is covered by a drug and alcohol program before work being initiated. The maintenance record entries shall be verified by the regional maintenance manager, lead mechanic, regional maintenance director, or director of maintenance before further flight.

The duty mechanic or a company A&P mechanic will inspect all “away-from-home maintenance” as soon as the aircraft returns to base to determine that such work is satisfactory and the necessary logbook entries are made.
5.8 Service Difficulty Reports

[14 CFR 135.415]

The Service Difficulty Report Program is an information system designed to provide assistance to aircraft owners, operators, maintenance organizations, manufacturers, and the FAA in identifying aircraft problems encountered during service. The Service Difficulty Program provides for the collection, organization, analysis, and dissemination of aircraft service information to improve service reliability of aeronautical products.

NOTE For the purpose of this section, during flight means the period from the moment the aircraft leaves the surface of the Earth on takeoff until it touches down on landing.

Air Methods is required by CFR to report to the FAA, the occurrence or detection of each failure, malfunction, or defect in an aircraft concerning any of the following:

1. Fires during flight and whether the related fire-warning system functioned properly
2. Fires during flight not protected by related fire-warning system
3. False-fire warning during flight
4. An exhaust system that causes damage during flight to the engine, adjacent structure, equipment, or components
5. An aircraft component that causes accumulation or circulation of smoke, vapor, or toxic or noxious fumes in the crew compartment or passenger cabin during flight
6. Engine shutdown during flight because of flameout
7. Engine shutdown during flight when external damage to the engine or aircraft structure occurs
8. Engine shutdown during flight due to foreign object ingestion or icing
9. Shutdown of more than one engine during flight
10. A propeller feathering system or ability of the system to control overspeed during flight
11. A fuel or fuel-dumping system that affects fuel flow or causes hazardous leakage during flight
12. An unwanted landing-gear extension or retraction, or opening or closing of landing-gear doors during flight

13. Brake system components that result in loss of brake-actuating force when the aircraft is in motion on the ground

14. Aircraft structure that requires major repair

15. Cracks, permanent deformation, or corrosion of aircraft structures, if more than the maximum acceptable to the manufacturer or the FAA

16. Aircraft components or systems that result in taking emergency actions during flight (except action to shut down an engine)

In addition to the reports required by the above items, Air Methods shall report any other failure, malfunction, or defect in an aircraft that occurs or is detected at any time if, in its opinion, the failure, malfunction, or defect has endangered or may endanger the safe operation of the aircraft.

5.8.1 SDR Procedure

When a failure, malfunction, or defect in an aircraft as outlined above occurs or is detected, the PIC (or mechanic for Items 14 and 15) shall immediately notify the appropriate on-call mechanic and the OCC. The mechanic shall immediately notify the regional maintenance manager and the regional maintenance director.

The PIC (or mechanic for Items 14 and 15) shall complete and submit an AMC Service Difficulty Report – FO-5214 (Page 1 of 4). The fillable form is available on > Flightdeck > Resources > Corporate Forms (AMC).

Completed AMC Service Difficulty Report shall be submitted to the email address at the bottom of the form within 24 hours of the occurrence.

5.8.1.1 Submitting Supplemental Information

No person may withhold a report required by this section even though all information required to complete form FO-5214 is not available. When Air Methods gets additional information, including information from the manufacturer or other agency, concerning a report required by this section, it shall expeditiously submit it as a supplement to the first report, and reference the date and place of submission of the first report. Supplemental information shall be submitted to Maintenance Support by using an AMC Service Difficulty Report – FO-5214 (Page 1 of 4) that refers to the first report.
5.8.1.2 Submission to the FAA

Air Methods Maintenance Control and Support will electronically transmit Service Difficulty Reports and Supplemental Information to the FAA offices collection point in Oklahoma City. Redundant SDRs shall not be filed for the same occurrence.

IMPORTANT If Air Methods 135 field personnel discover a failure, malfunction, defect, or aircraft structure that requires repair by a 145 repair station, the 135 field personnel shall submit an AMC Service Difficulty Report – 5214 per procedures above. If a 145 repair station discovers a failure, malfunction, defect, or aircraft structure that requires repair while performing maintenance, the 145 personnel shall file the SDR requirements of 14 CFR 145.221 to the FAA and will inform the Air Methods 135 Certificate and forward a copy of the SDR to the Air Methods Maintenance Control and Support Department.
6 Other Procedures, Policies, and Instructions

6.1 Aircraft Ground Handling

With the exception of fixed-base operator (FBO) personnel, only properly trained Air Methods pilots, mechanics, or medical personnel who are employees of Air Methods will operate tractors, tug-a-lugs, aircraft transporters, or other devices designed to move aircraft. Medical personnel may reposition the equipment after aircraft movement is complete.

For helicopter operations using a tug-a-lug or other lifting device, an Air Methods pilot or mechanic will perform a walk-around inspection of all four saddles to ensure that the saddles are correctly contacting the cross tubes (or jack/lifting points). The inspection will be completed before the aircraft is lifted clear of the ground. Ensure the tug-a-lug or lifting device is clear of the aircraft before moving from under the aircraft.

For airplanes or helicopters equipped with wheeled landing gear, the brakes will be set or the wheels chocked before disconnecting the towing device.

At locations that require close quarters maneuvering around other aircraft or hangar facilities, a “wing walker” shall be used. Use of a “wing walker” will help prevent “hangar rash” or more serious aircraft damage. Medical personnel may be used in this role.

Aircraft may not be towed or moved using ground handling wheels at weights above those stated in the appropriate aircraft flight manual. Medical personnel may assist when needed when moving aircraft using ground handling wheels; however, a pilot or mechanic will be responsible for “steering” the aircraft.

Cloth, nylon, or similar straps will not be used in lieu of tow bars (or other approved devices) when towing aircraft.
6.2 Avionics Equipment Databases
Avionics equipment databases shall be kept current in aircraft operated under instrument flight rules (IFR). If a database is expired in an aircraft operated under IFR, alternate navigation equipment approved for IFR operations and appropriate for the flight must be installed. Aircraft operated under visual flight rules (VFR) may maintain current avionics databases, however they are not required by this manual to be current for VFR operations unless required by CFR or aircraft flight manual. See the “Overwater and Extended Overwater Operations” on page 84 section in this manual.

6.3 Carriage of Narcotics and Other Prohibited Drugs and Substances
Air Methods, by the very nature of its business, will transport narcotic and other controlled drugs and substances. Those drugs and related substances carried aboard Air Methods aircraft will be only those controlled by federal and/or local state statutes and agencies.

6.4 Emergency Equipment
Fire extinguishers shall be installed in accordance with applicable CFRs.

Survival kits, appropriate for the season and area of operation, shall be carried. The contents of these kits shall be determined by the senior lead pilot, program aviation manager, or regional aviation manager, unless otherwise specified.

6.5 Oxygen for Medical Use
Oxygen dispensed for medical use will be provided by Air Methods or by an authorized EMS/hospital from an approved system.

Oxygen dispensing systems (liquid and gaseous) will be maintained in accordance with Air Methods’ FAA-approved maintenance program.

Gaseous oxygen bottles will not be filled above the container’s rated pressure.
6.6 Security – Base and Airport

Company employees will not discuss details of aircraft operations, or identity of passengers, trip destinations, or any other confidential information regarding the business of the company or its passengers with anyone who does not have a valid need to know. All information gained through performance of duties is considered confidential.

6.7 Smoking

No person shall smoke within fifty (50) feet of the exterior of any aircraft, nor at any time within the interior of any company aircraft.

6.8 Use of Alcoholic Beverages

The serving of alcoholic beverages is not permitted on Air Methods aircraft. No person who appears to be intoxicated will be allowed to board an Air Methods aircraft.

6.9 Use of Drugs

Certain drugs in common use have a marked effect on the nervous system, which is temporarily detrimental to a crewmember’s ability. Crewmembers should consult their doctor concerning any questions about such drugs. Crewmembers are expected to inform the chief pilot when the possibility of drug side effects exists or when they sense that their physical or mental condition might affect their ability to perform crew duties.

Whether on or off company property, and whether on or off duty, the use, sale, distribution, or transportation of illegal narcotics, hallucinogens, depressants, stimulants, marijuana, or other mind-altering drugs by company employees may result in immediate termination of employment.
6.10 Use of Intoxicants
[91.17]

The use of intoxicants, including beer and wine, by any company personnel while on duty, or, in the case of flight crewmembers, within eight hours before duty, is prohibited. No crewmember may report for duty while under the influence of alcohol.

6.11 Guidance on Exposure Control and Aircraft Cleaning

6.11.1 Protection and Control of Infectious Conditions
Crewmembers and mechanical staff members shall take appropriate measures to guard themselves and our patients from the harm of exposure to infectious conditions such as blood-borne pathogens, MRSA, Staph, and Hepatitis-B. Though this is not an inclusive list of all diseases, these are some of the more common types encountered in the scope of helicopter air ambulance operations.

6.11.2 Appropriate Measures
Crewmembers and mechanical staff will ensure that aircraft and aircraft components are cleaned and decontaminated using an acceptable, noncorrosive, EPA-approved antibacterial/antimicrobial cleaning solution to eliminate bacteria and other microbial growth on the interior surfaces of the aircraft and its fixed equipment.

All applicable manufacturers’ recommendation for the proper application of the acceptable, noncorrosive, EPA-approved cleaning solution, and accompanying cleaning items, such as cloths, paper towels, brushes, and other cleaning aides, will be disposed of according to SDS recommendations. Crewmembers and mechanical staff will don and doff appropriate personal protective equipment to prevent accidental exposure to biohazardous substances via transmission through skin, eyes, mouth, inhalation, or persistent residual contact on individual clothing items.

Manufacturer’s recommendations will be followed to rinse and remove cleaning solution residue from aircraft floors and surfaces.
When favorable conditions exist, aircraft interior should be allowed to bathe in sunlight and fresh air should be allowed to circulate. Unfavorable conditions refer to high winds, precipitation, darkness, or hungared aircraft. Sunlight and clean air have desirable disinfecting qualities proven to kill bacterial growth.

IMPORTANT Ensure doors are guarded against wind gusts if left open to allow air to circulate throughout the cabin.

6.11.3 **Personal Protective Equipment Required when Cleaning Aircraft**
The following are required when a cleaning agent, such as SaniZide Plus, is used for aircraft cleaning.

- **Eye and face protection** – Wear goggles or safety glasses with side shields.
- **Skin and hand protection** – Chemical resistant gloves are recommended.
- **Other wear** – Chemical-resistant footwear and protective clothing appropriate for the risk of exposure. Contact health or safety professional or manufacturer for specific information.
- **Respiratory protection** – If engineering controls do not maintain airborne concentrations below recommended exposure limits (where applicable) or to an acceptable level (in countries where exposure limits have not been established), an approved respirator must be worn. Contact health and safety professional or manufacturer for specific information.
- **Thermal hazards** – Not available.
- **General hygiene considerations** – Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants.
6.11.4 Cleaning Interval

Weekly thorough cleaning

Weekly thorough cleaning is defined as the removal by scrubbing and washing, as with hot water and soap, disinfectant, or suitable detergent, or by vacuum cleaning, of infectious agents and of organic matter from surfaces on which and in which infectious agents may find favorable conditions for surviving or multiplying. Aircraft that are removed from service for extended periods of time such as for extended maintenance are exempted from weekly thorough cleaning but shall be cleaned according to this guidance before being placed back in service.

Routine cleaning

Routine cleaning of the aircraft will occur between each patient transport and may be accomplished upon the completion of the patient transport at the receiving facility or after arrival at home base.

6.11.5 Adherence to Exposure Control Plan

The exposure control plan is an exhaustive reference for avoidance, mitigation, and personal protection against biohazardous conditions. The practices prescribed in the exposure control plan shall be adhered to by all Air Methods personnel.
7 Safety Program

7.1 Safety Policy
Air Methods is committed to the attainment of the highest level of safety in the accomplishment of our corporate mission. It is our goal to provide a safe and healthy working environment for all of our team members and, in doing so, to support state and federal laws regarding safety. Our intention in making this strong commitment is to eliminate injuries to our employees and accidental damage to equipment and/or property. It will be understood that team members of all levels of the company will be safety champions.

The scope of the Air Methods safety program includes all aspects of company practice including in flight, in the performance of maintenance, on the ramps, on the helipads, in our offices, in fire prevention, and in every environment in which we work.

Responsibility for implementing the safety program rests with the Air Methods vice president of safety and risk management, regional safety directors, and directors, managers, and supervisors at every level. These responsibilities bring with them the obligation and authority to actively promote safety, company-wide.

7.2 Program Elements
The following items comprise the core elements of the Air Methods Safety Management System. Programs will be added, deleted, or changed to meet current organization and operational mission requirements.

- Air Methods’ Safety Management System manual
- Management-leadership commitment.
- Risk Management (hazard identification, reporting, evaluation, and control)
 - Report360 is the primary means of reporting an aviation safety event, as set forth in the Safety Management System manual, section 5.3.
- “Y or Z” work order costs
 - Costs shall include but are not limited to; labor hours, components (purchase, repairs or rentals), equipment rental, shipping, and relocation of aircraft.
• Base safety audits.
• Accident and incident reporting.
• Accident and incident investigation.
• Safety communications and awareness.
8 Operational Control Center Guidance

8.1 General
The Operational Control Center (OCC) is committed to safe, professional air medical transport. Our initiatives and programs are dedicated to enhance safety by monitoring significant safety of flight issues relating to hazards, weather conditions and airspace restrictions. The goal is to protect assets and increase safety by supporting pilots and Communication Centers, therefore, increasing the awareness of possible adverse weather or other in-flight hazards. In addition, the Operational Control Center serves as a 24/7 staffed element for flight-monitoring and assistance, as well as a coordination center for Air Methods during normal, night, and holiday hours.

8.2 Purpose
The Operational Control Center is an Agent for Air Methods Corporation assisting with Operational Supervision and Control. The OCC is primarily responsible for flight monitoring while providing Advisory/Alert information affecting Air Methods aircraft. Advisories/Alerts may include, but are not limited to, flying in the vicinity of marginal or deteriorating weather conditions, temporary flight restrictions (TFR), ground proximity, or any other significant possibility that could become a hazard to flight. All alerts will be communicated to the pilot or the appropriate Communication Center responsible for flight following.

8.3 Operational Control Specialist (OCS) Duties and Responsibilities

- Reports to the director of aviation risk and compliance
- Interfaces with the director of operations and the chief pilot
- Answers all incoming requests for service in a professional and courteous manner
- Participates in the pre-flight risk analysis required under §135.617
- Assists the pilot in mitigating any identified risk
- Initiates Post-Accident Incident Plan (PAIP) when necessary
Operational Control Center Guidance

- Notifies Certificate Management of accidents, incidents, or other significant events
- Responsible for a thorough knowledge of flight tracking programs
- Responsible for monitoring all flight conditions that may affect Air Methods aircraft from takeoff to landing IAW CFRs and the Air Methods General Operations Manual
- Assists Communication Centers with options for enroute adverse weather conditions
- Ensures a thorough knowledge of the Air Methods General Operations Manual, to include the “Communications Specialist Guidance” on page 182.
- Monitors Flight Log for compliance
- Ensures thorough knowledge of CFR Parts 91 and 135 regulations
- Responsible for meeting operational goals, initiatives, and objectives
- Analyzes aviation weather to determine marginal and hazardous conditions for flight
- Understands and applies the Air Methods Pre-flight Risk Analysis Program and how risk assessment values are determined
- Organizes all sources of flight information to determine and develop an Operational Control Center flight advisory or alert
- Rapidly disseminates advisories and alerts to the appropriate pilots or communication centers of known or forecasted severe weather conditions, TFRs, or any concerns pertaining to safety of flight
- Receives and records all information transmitted to the Operational Control Center
- Ensures dissemination of transmitted information to responsible areas
- Maintains 24/7 staffing of the Operational Control Center
- Performs other duties as assigned

8.4 Flight Monitoring

The operational control specialist shall monitor the status of all in-flight aircraft operated by the Air Methods Corporation and monitor the Alert System for hazards.
8.5 Hazard-to-Flight Alert

All Operational Control Center alerts will be transmitted as rapidly as possible to the appropriate pilot or communication center. The communication center responsible for the enroute aircraft within the advisory area will be contacted with all pertinent information including, but not limited to the following:

- Source of information (adverse or deteriorating weather, forecasted adverse weather, TFR, SIGMET, National Weather Service warning, etc.)
- Type of hazard (IFR conditions, TS, GR, FU, TFR, etc.)
- Location and limits of affected area
- Effective time and duration of hazard
- Bearing, distance, location, movement, speed, etc. of hazard in relation to the affected aircraft
- Remarks (any pertinent information)

8.6 Post-Accident/Incident Plan (PAIP)

The operational control specialist will notify certificate management of a PAIP without delay. The OCS will have a thorough knowledge of the PAIP process in this manual (see “Post-Accident Incident Plan (PAIP)” on page 88). The OCC is the primary contact point for a PAIP.

Programs must use the PAIP that was developed for their specific program. When requested, the OCC will provide assistance to any communications center dealing with an incident or emergency.

- The event is being reported locally or nationally.
- The PIC declared an emergency.
- The PIC went IIMC.
- Damage or injury to aircraft or crew.
- OCC supervisor discretion.

Any other weather PAIP will require the OCC to make a journal entry to document the incident for future use if needed.
8.7 Pre-Flight Risk Analysis Support

[135.617, 135.619]

The Operational Control Center participates in the pre-flight risk analysis required under §135.617 to include the following:

- Ensure the pilot has completed all required items on the pre-flight risk analysis worksheet.
- Confirm and verify all entries on the pre-flight risk analysis worksheet.
- Assist the pilot in mitigating any identified risk before takeoff; flight considerations, human factors and weather.
- Acknowledge in writing, specifying the date and time, that the pre-flight risk analysis worksheet has been accurately completed and that, according to their professional judgment, the flight can be conducted safely.

The Operational Control Center supports pre-flight risk mitigation for flights that reach a predetermined level of risk as outlined in the Air Methods Pre-Flight Risk Analysis Program.

8.8 Non-Flying Alerts

As time permits, the Operational Control Center will provide hazardous weather advisories to bases or areas of operation. The purpose is to provide advanced notice, so that bases can activate their hazardous weather plans to protect their assets.

8.9 24-Hour Hotline

The Operational Control Center has a toll-free number that can be used for emergency contact, reportable incidents, or to reach any of the CFR Part 119 managers. Incidents include, but are not limited to, fuel spills, hazmat or potentially hazardous situations, or after activation of a PAIP. The OCC phone number is available to all agencies that require a 24-hour contact number. Contacting the OCC satisfies notification of Air Methods for PAIPs, accidents, and incidents.

Toll Free (866)676-3442
8.10 Requests for Service
The OCC will not handle requests for service. All requests for service will be relayed to the appropriate communications center.

8.11 General Operations Manual

8.12 Shift Briefings
Shift Briefings are an essential tool enabling the oncoming staff to gain a situational awareness so they may perform their functions towards maintaining operational control of flight operations. It is therefore essential that shift briefing is fact-focused, and outlines the essential information and a hand-off of active action items.

The off-going shift is responsible to brief on-coming staff about, but not limited to, the following:

- Staffing: location, status, and personnel issues that can affect operations
- Administrative: changes to Flight Operations policies, manuals, or Operations Specifications
- System status
 - Submitted Service Work Orders
 - Equipment issues
- Significant activities that occurred during the shift
- Decisions and events anticipated during the next shift
- Flight Operations
 - Weather summary
 - Pertinent NOTAMs
- Communication Center issues and status
8.13 Training and Testing

OCS regulatory training requirements are specified in §135.619(f) and contained in the Pilot Training Program Annex 33.

- Staff must complete the certificate holder’s FAA-approved operational control specialist initial training program and pass an FAA-approved knowledge and practical test given by the certificate holder. Elements of the training may be completed by attending the pilot’s initial training course.
- Every 12 months after satisfactory completion of the initial training, each operational control specialist must complete a minimum of 40 hours of recurrent training.
- Testing and retesting standards are outlined in the approved Pilot Training Program Annex 33.
9 Medical Crewmember Guidance

9.1 General Information
This section provides guidance for those medical personnel who have successfully completed the FAA-approved Air Methods Crewmember Training Program. Crewmember training must be completed annually, as outlined in the training program.

Crewmember training is required for all clinicians involved in helicopter NVG operations.

NOTE Medical personnel are those who have not completed the Air Methods Crewmember Training program. They shall receive a full passenger brief in accordance with 14 CFR Part 135.117(a), 135.117(b), and 135.621 for each assigned flight sequence before takeoff of the first segment.

9.2 Duties and Responsibilities
Guidance for the following duties and responsibilities is included in the Air Methods Crewmember Training Program presentation.

• Supervise patient during fueling procedures (hot-engine operating and cold-engine shutdown).
• Perform passenger/patient briefing.
• Assist the PIC during cabin emergencies (fire, medical equipment malfunction, etc.).
• Assist the PIC during emergency egress.
• Load and unload patient (hot-engine operating and cold-engine shutdown).
• Secure medical equipment/baggage in the cabin compartment.
• Assist with crowd control at landing areas, including acting as the tail rotor guard or briefing a ground emergency worker as to the tail rotor guard.
• Perform a walk-around of the aircraft before each flight.
• Ensure that the EPU (External Power Unit) and/or APU (Auxiliary Power Unit) is disconnected after start.
• Ensure cabin exits in cabin compartment are secure.
• Assist the PIC with obstacle clearance during approach and landing.
• Perform medical associated communications on appropriate medical communications equipment.
• Assist PIC with charts, approach plates, checklists, coordinates, and other reference material as appropriate.
• Be able to perform an emergency aircraft engine shutdown in the event the PIC is incapacitated.
• Perform normal and emergency operation of medical equipment.
• Be responsible for the cleanliness of the cabin, as described under “Guidance on Exposure Control and Aircraft Cleaning” on page 164.

9.3 Aircraft Emergency Engine Shutdown
If a PIC becomes incapacitated in the event of an accident or incident, the medical crewmembers will be responsible for the emergency engine shutdown of the aircraft. This shall include the correct positioning of engine controls, fuel system controls, and electrical equipment controls as appropriate to the aircraft being operated.

Detailed guidance for specific make and model will be given during the crewmember training presentation.

9.4 Aircraft Pre-flight Walk-Around
To assist the pilot in ensuring that all cowls, caps, belts, and fasteners are secured before flight, Medical crewmembers will perform a complete 360-degree walk-around of the aircraft before entering the aircraft for flight. It is vital that caution is taken to avoid the tail rotor of the aircraft when the aircraft is operating. When the aircraft is operating, the crewmember shall perform a detailed look down the left and right sides of the helicopter before entering.
9.5 Approach and Departure Procedures
Medical crewmembers shall assist the PIC with obstacle clearance during approach and departure to and from all landing zones.

During approach, medical crewmembers shall assist the PIC in determining the suitability of a landing zone (for example, size, shape, surface, slope, surroundings, etc.), and bring any immediate concerns to the attention of the PIC.

During departure, medical crewmembers shall assist the PIC in observing any obstructions that may have been overlooked during the approach phase.

During any critical stage of flight (such as taxi, approach, landing, or takeoff), the crew shall, when able to, divert their attention from patient care to assist the pilot with obstacle clearance.

9.6 Assisting Pilot during Emergencies
In the event of an in-flight emergency, the pilot will announce the emergency and may request assistance from the crew. When requested, the crew shall cease patient care and await instructions and/or guidance from the PIC. See “Emergency Operations” on page 59, for guidance.

9.7 Assisting Pilot with Reference Materials
Upon request, medical crewmembers shall, when able, assist the PIC with handling navigation charts, approach plates, checklists, coordinates, and other reference materials. Medical crewmembers may be requested to find specific information (such as airport communication frequencies or minimum descent altitude), confirm an emergency procedure, or confirm coordinates for a landing zone, etc.

Detailed information regarding the use of such publications and reference materials is given during the Crewmember Training presentation.
9.8 Auxiliary Power Unit (APU) Procedures
To assist the pilot with an auxiliary power unit (APU) after engine start, the following procedure will be used.

To assist the pilot with an APU after engine start

1. Wait for a signal from the pilot before removing power from the aircraft.
2. Turn off the APU/EPU as applicable.
3. Remove the plug from the aircraft receptacle.
4. Close and secure the APU/EPU door on the aircraft.
5. Remove the APU/EPU and cords from the takeoff area and secure.

Detailed guidance for specific make and model is given during the Crewmember Training presentation.

9.9 Communications with First Responders and Medical Facilities
Medical crewmembers shall be responsible for air-to-ground communications with first responders and medical facilities in regard to patient information. In regard to landing-zone information (obstructions, coordinates, etc.), the PIC may delegate these communications to medical crewmembers.

9.10 Deplaning Aircraft After Landing or Enplanement before Takeoff
See the following sections of this manual for guidance.

• “Emergency Operations” on page 59
• “Deplaning Aircraft After Landing or Enplaning Before Takeoff” on page 51
• “Loading and Unloading Patients or Passengers” on page 118
9.11 Emergency Evacuation Assistance
See “Emergency Operations” on page 59, for guidance.

9.12 Fueling Procedures
See “Fueling” on page 65, for guidance. This includes being familiar with all subsections under the topic.

9.13 Hazardous Materials

9.14 Helicopter Night Vision Goggles Operations (HNVGO)
See “Helicopter Night Vision Goggle Operations (HNVGO)” on page 109, for guidance.

9.15 Landing-Zone Safety and Crowd Control
See “Landing-Zone Safety and Crowd Control” on page 116, for guidance.

9.16 Loading and Unloading Patient – Helicopter Operations
See “Loading and Unloading Patients or Passengers” on page 118, for guidance.
9.17 Loading and Unloading Patient – Fixed-Wing Operations
See “Loading and Unloading Patient/Passenger” on page 137 for guidance information.

9.18 Normal and Emergency Operations of Medical Equipment
Medical crewmembers shall be responsible for the normal and emergency operation of all installed medical equipment (suction system, medical oxygen system, etc.).

Detailed guidance for specific equipment is given during the Crewmember Training presentation.

9.19 Passenger Briefing
See “Passenger Briefing” on page 85, for guidance.

9.20 Safety Program
See “Safety Program” on page 167, for guidance.

9.21 Securing Doors on the Aircraft
Medical crewmembers will assist the PIC in securing doors after entry into the aircraft, and ensure that they remain closed and secure during flight operations. Special care should be taken to ensure that seatbelt tails and buckles are inside the aircraft before securing cabin doors. Operations with doors open will not be performed unless under the direct supervision of the PIC. Detailed guidance for specific make and model is given during the crewmember training presentation.
9.22 Securing Cargo and Aircraft
See the following sections of this manual for guidance.

- “Safety Belts, Child Restraints, and Carry-On Baggage” on page 94
- “Securing Cargo” on page 97
- “Securing Aircraft after Shutdown” on page 97

9.23 Smoking
See “Smoking” on page 163 for guidance.

9.24 Use of Drugs
See “Use of Drugs” on page 163, for guidance.

9.25 Use of Intoxicants
See “Use of Intoxicants” on page 164 for guidance.
10 Communications Specialist Guidance

10.1 General Information
This section provides guidance for those who have successfully completed the FAA-approved Air Methods communications specialist training program and which is part of first-tier operational control. This training must be completed annually, as outlined in the FAA-approved communications specialist training program and described under “Operational Control” on page 34.

 Those personnel who do not comply with the communications specialist training requirements will not be authorized to perform the duties and responsibilities listed below.

The communications specialist coordinates and maintains effective communications between requesting facilities/agencies, crewmembers, medical personnel, maintenance personnel, and receiving facilities/agencies, as appropriate, to ensure a safe, expeditious response for emergency and nonemergency assistance and/or transport.

10.2 Duties and Responsibilities
Additional guidance for the following duties and responsibilities can be found in the Air Methods communications specialist training program presentation.

• Answers all incoming requests for service and information in a professional and courteous manner.
• Coordinates and monitors all rotor-wing and fixed-wing transports in response to customer requests.
• Tracks status of all aircraft to include out of service times, public relations missions, and maintenance-related missions.
• Completes Air Methods internet based Flight Log for all flights conducted by an Air Methods aircraft.
• Operates and monitors all radio equipment maintaining effective communications with all crewmembers as appropriate, including flight following and tracking according to policies, procedures, and regulations.
• Initiates PAIP as outlined in this manual.
• Coordinates and maintains effective communications between requesting facilities/agencies, crewmembers, medical personnel, and receiving facilities/agencies, as appropriate, to ensure an expeditious response for emergency and nonemergency assistance and/or transport.

• Will inquire about whether or not an incoming request has been refused or rejected by another air ambulance operator and include this information in the flight request.

• Arranges for all necessary and/or requested ground transportation associated with a flight.

• Ensures effective communications with the customer relaying any information regarding transport delays or changes in itinerary as soon as possible.

• If aware of a practice PAIP drill, notifies the OCC.

• Performs other duties as assigned.

10.3 Flight Following
Flight following shall follow the procedures outlined under “Flight Following” on page 60

10.4 Hazard and Weather Alerts from Operational Control Center
Upon receiving a hazard or weather alert from the Operational Control Center, the alert will be relayed to the pilot without delay.
10.5 Post-Accident/Incident Plan (PAIP)
The communications specialist shall initiate the PAIP as required by this manual. The PAIP shall be developed and maintained by the Air Methods regional aviation director according to the guidance provided under “Post-Accident Incident Plan (PAIP)” on page 88 in this manual. Overdue aircraft, accidents, incidents, damage to aircraft, unscheduled landings, in-flight weather and maintenance aborts, unplanned deviations from the original flight plan, or fuel-associated issues related to reported fuel loads versus estimated flight times shall be reported to the Operational Control Center at (866)676-3442 without delay. Issuing a PAIP from the Flight Log on > FlightDeck satisfies the initial notification requirement. In addition, the following are examples of possible reasons to elevate concerns to the OCC.

- General safety concerns
- Unplanned fuel stops
- Weather concerns
- Maintenance issues
- Indicators of inadequate crew rest

10.6 Requests for Service
All requests for service (flight request) will be accepted and relayed on an emergent and prioritized basis. It will be the responsibility of the Communication Center to assign and notify the appropriate aircraft. An appropriate aircraft is defined as the closest available aircraft to the location requesting the service and an aircraft that is properly equipped and qualified for that mission (IFR versus VFR, fixed-wing versus rotor-wing, equipment required, etc.).

If it is known that another flight service or Air Methods PIC declined the flight for any reason, this information must be communicated to the PIC that is offered the flight request.

Upon initial contact all known information pertinent to the flight request shall be communicated to the PIC, including, but not limited to the following:

- Type of flight (inter-facility transfer, on-scene response, specialty team transport, etc.)
- Additional equipment requirements (balloon pump, isolette, neonate nitric gas, etc.)
- LZ information for on-scene responses
• Frequencies for communicating with ground personnel for on-scene responses
• Requesting facility or agency
• Receiving facility or agency
• Bearing and distance to the requesting facility or agency or other location
• HazMat considerations as appropriate
• Patient weight (if known)

It is the sole responsibility of the PIC to accept or decline a flight request that has been offered by a communications specialist. No attempts should be made by the communications specialist to question the pilot’s judgment in denying a flight request.

10.7 Transport Delays
When any aircraft transport is delayed or a change in flight plan is made for any reason (weather, maintenance, patient condition, etc.), the PIC shall notify the communications specialist, and then the communications specialist shall notify all parties involved in the original flight request as soon as possible.

10.8 General Operations Manual
• The current applicable sections of the Air Methods General Operations Manual can be referenced on the Air Methods Internet based Flight Log. To access, select the “Ops Manual” link at the top of the Flight Log site.
Forms and documents shown in this section are for reference only and may not be the most current version. The most current versions of the actual corporate forms are located on Flightdeck > Resources > Corporate Forms (AMC).
Air Methods Part 135 Air Carrier Certificate

Air Carrier Certificate

This certifies that

Air Methods Corporation
5500 South Quebec Street
Suite 300
Greenwood Village, CO 80111

has met the requirements of the Federal Aviation Act of 1958, as amended, and the rules, regulations, and standards prescribed thereunder for the issuance of this certificate and is hereby authorized to operate as an air carrier and conduct common carriage operations in accordance with said Act and the rules, regulations, and standards prescribed thereunder and the terms, conditions, and limitations contained in the approved operations specifications.

This certificate is not transferable and, unless sooner surrendered, suspended, or revoked, shall continue in effect indefinitely.

By Direction of the Administrator

[Signature]

Certificate number: QMLA2334

Effective Date: 03/01/1992

Issued at: NM03 Denver, CO

Manager

Title

Region/Office

[Signature]
Air Methods Part 133 Operating Certificate

Operating Certificate

This certifies that

AIR METHODS CORPORATION
5500 S. Quebec Street
Greenwood Village, CO 80111

has met the requirements of the Federal Aviation Act of 1958, as amended, and the rules, regulations, and standards prescribed therein, for the issuance of this certificate and is authorized to operate as an Air Operator and conduct

Rotorcraft External Load Operations

in accordance with said Act and the rules, regulations, and standards;

Class A, B, and D Loads are Authorized Valid for the rotorcraft on the attached list.

This certificate is not transferable and, unless canceled, suspended, superseded, surrendered or revoked, shall continue in effect until July 31, 2020.

By Direction of the Administrator

[Signature]

Richard Eberl
Acting Manager, DEN-FSDO

Certificate number: QML29330

Effective Date: 07/23/2018

Issued at: Denver FSDO, CO
Air Methods Bulletin Template

Title of the Bulletin

Number: Chronological, year – 2-digit number (e.g., 2016-01)
Issue Date: Date announced/posted
Issuer: Department head (or Issuing Department)
Issued To: Group(s) audience to receive the bulletin
Response Type: Critical – requires an immediate response or action
Non-critical – does not require an immediate response

Archive Note: Corporate Publications adds the content of this bulletin into the appropriate manual at the next revision, after the addition, the bulletin receives archived status, if necessary.

Location: Air Methods Bulletins are posted on FlightDeck > Resources > Corp Pub > Air Methods Bulletins.

General Information:

Body of the Bulletin

Further Information:

Any questions regarding this bulletin should be addressed to:

Name: Name:
Title: Title:
Phone: Phone:
Email Address: Email Address:

Rev IR: 1 Page 1 of 1
Airplane Trip Sheet – FO-5211

<table>
<thead>
<tr>
<th>Flight Number</th>
<th>PIC</th>
<th>Remarks</th>
<th>Origin</th>
<th>Takeoff</th>
<th>Fed CO</th>
<th>Actual CG</th>
<th>Alt. CO</th>
<th>Max. TO</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

WX / ATC CLEARANCE

<table>
<thead>
<tr>
<th>Flight Number</th>
<th>PIC</th>
<th>Remarks</th>
<th>Origin</th>
<th>Takeoff</th>
<th>Fed CO</th>
<th>Actual CG</th>
<th>Alt. CO</th>
<th>Max. TO</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

WX / ATC CLEARANCE

<table>
<thead>
<tr>
<th>Flight Number</th>
<th>PIC</th>
<th>Remarks</th>
<th>Origin</th>
<th>Takeoff</th>
<th>Fed CO</th>
<th>Actual CG</th>
<th>Alt. CO</th>
<th>Max. TO</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

WX / ATC CLEARANCE

<table>
<thead>
<tr>
<th>Flight Number</th>
<th>PIC</th>
<th>Remarks</th>
<th>Origin</th>
<th>Takeoff</th>
<th>Fed CO</th>
<th>Actual CG</th>
<th>Alt. CO</th>
<th>Max. TO</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

WX / ATC CLEARANCE

I certify that I have complied with FAR 91.7 and 135.71, performed a preflight and determined that there are no known safety or flight items outstanding on this aircraft.

Form Number: FO-5211

Effective Date: 31 May 2017
AMC Service Difficulty Report – FO-5214 (Page 1 of 4)

Section 1: Submitter Information
- Unique Control #: CMLA_
- Difficult Date: (mm/dd/yyyy)
- Registration #: N
- Submitter Designator: CMLA

Section 2: Codes
- Operator Designator: CMLA
- Operator Type: Air Carrier
- JASICATA Code: Select from list
- Stage of Operation: Select from list
- Nature of Condition: Select up to 3
- FAA Region: NM
- Flight Number: Not Required

Section 3: Major Equipment Identity
- Manufacturer: Select from list
- Model: Select from list
- Serial Number: Select from list
- Total Time (hours): Select from list
- Total Cycles: Select from list

NOTES:
- Form number: FO-5214
- Effective Date: 6/19/95
AMC Service Difficulty Report – FO-5214 (Page 2 of 4)
AMC Service Difficulty Report – FO-5214 (Page 3 of 4)

Section 5: Specific Part or Structure Causing Difficulty or is Damaged

<table>
<thead>
<tr>
<th>(a) Part Name</th>
<th>(b) Manufacturer’s Name</th>
<th>(c) Part Number</th>
<th>(d) Serial Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e) Part Condition</td>
<td>(f) Part/Defect Location</td>
<td>(g) Total Time (hours)</td>
<td>(h) Total Cycles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 6: Component/Assembly that Includes Defective Part (Next Higher Assembly)

<table>
<thead>
<tr>
<th>(a) Component Name</th>
<th>(b) Manufacturer’s Name</th>
<th>(c) Part Number</th>
<th>(d) Serial Number</th>
<th>(e) Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f) Location</td>
<td>(g) Total Time (hours)</td>
<td>(h) Total Cycles</td>
<td>(i) Time Since (hours):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Overhaul</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Repair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inspection</td>
</tr>
</tbody>
</table>
AMC Service Difficulty Report – FO-5214 (Page 4 of 4)

Section 7: Structure Causing Difficulty

<table>
<thead>
<tr>
<th>(a) Body or Fuselage Station</th>
<th>(b) Water Line</th>
<th>(c) Crack Lengths (inches)</th>
<th>(d) Number of Cracks</th>
</tr>
</thead>
<tbody>
<tr>
<td>From/At</td>
<td>To</td>
<td>From/At</td>
<td>To</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(e) Stinger</th>
</tr>
</thead>
<tbody>
<tr>
<td>From/At</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(f) Bulb Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>From/At</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(g) Wing Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>From/At</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(h) Structural Other</th>
<th>(i) Corrosion Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>From/At</td>
<td>Left</td>
</tr>
</tbody>
</table>

Person completing Form:

Contact Information

Date:

Please complete this form, save the file with the date and aircraft serial number in file name, and Email it to AMSWELFaul@airmethods.com.

Example: If aircraft serial number 4567 had a reportable event 0212/0003, use the file name 0212/0003/4567 as the save as file name. If you have questions, please call the MFR.

Form Number FO-5214

Effective Date: 04/12/2019

Page 4 of 4
Daily Flight Log / Load Manifest – FO-5155

<table>
<thead>
<tr>
<th>Flight No.</th>
<th>Remarks</th>
<th>Time In Service Through Flight Time</th>
<th>IOS Weight</th>
<th>Fuel Limit</th>
<th>Actual</th>
<th>MIL Limit</th>
<th>Net PF</th>
<th>Total Time In Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PAX X</td>
<td>SRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. PAX X</td>
<td>SRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. PAX X</td>
<td>SRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. PAX X</td>
<td>SRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. PAX X</td>
<td>SRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. PAX X</td>
<td>SRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. PAX X</td>
<td>SRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. PAX X</td>
<td>SRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. PAX X</td>
<td>SRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. PAX X</td>
<td>SRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. PAX X</td>
<td>SRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. PAX X</td>
<td>SRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. PAX X</td>
<td>SRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Certify that I have compared the flight log and manifest. Performing a preflight, and have determined that there is no unsafe flight items outstanding on this aircraft.

[Signature]

[Signature]

[Signature]

[Signature]

Form Number: FO-5155

Prepared Date: 2012/01/01
Deferred Discrepancy Log – FO-5157

Aircraft Information

<table>
<thead>
<tr>
<th>N°</th>
<th>Serial No.</th>
<th>Model</th>
<th>Location</th>
</tr>
</thead>
</table>

Discrepancy

<table>
<thead>
<tr>
<th>MEL#</th>
<th>Category</th>
<th>Exp. Date</th>
<th>Log Page</th>
</tr>
</thead>
</table>

Data Submitted: [Start of Order] [Revision No.] [Request Removed] [Complete]:

Date Dialed: [Date Dialed] [Order Dialed] [Dialed On]:

Received: [Received] [Received] [Received]:

Date Dialed: [Date Dialed] [Order Dialed] [Dialed On]:

Corrective Action

<table>
<thead>
<tr>
<th>MEL#</th>
<th>Category</th>
<th>Exp. Date</th>
<th>Log Page</th>
</tr>
</thead>
</table>

Data Submitted: [Start of Order] [Revision No.] [Request Removed] [Complete]:

Date Dialed: [Date Dialed] [Order Dialed] [Dialed On]:

Received: [Received] [Received] [Received]:

Date Dialed: [Date Dialed] [Order Dialed] [Dialed On]:

Mailto: AM5DMEL.Inv@airmethods.com

Form Number: FO-5157
Effective Date: [Date]
Do Not Fly – Logbook and/or iPad Removed
In the event that the required logbook and/or iPad has been removed from an aircraft, and a full-size, laminated sign cannot be immediately located for indicating the aircraft is restrained from flight, the following image may be printed and substituted.

![Do Not Fly Sign]
EFB Discrepancy Form – 5713

<table>
<thead>
<tr>
<th>PIC</th>
<th>Mode of Flight</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Take off</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Departure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enroute</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arrival</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Approach</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

Form Number: 5713
Effective Date: 02/20/10
IIMC Procedure Template – 5159

<table>
<thead>
<tr>
<th>Location</th>
<th>IIMC Procedure for:</th>
<th>NM radius. Chart oriented to MAG N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APP FREQ:

<table>
<thead>
<tr>
<th>Minimum Safe Altitude:</th>
<th>Minimum Safe Altitude:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery ARPT</td>
<td>Recovery ARPT</td>
</tr>
<tr>
<td>ID</td>
<td>Recovery ARPT</td>
</tr>
<tr>
<td>Recovery ARPT</td>
<td>Recovery ARPT</td>
</tr>
</tbody>
</table>

- **Attitude (Level)**
- **Heading** (Turn only to avoid known obstacles)
- **Power** (Adjust to climb power)
- **Airspeed** (Adjust to climb airspeed)

Climb to the minimum safe altitude to clear all obstacles in the area. Make all turns no greater than standard rate.

Contact appropriate Approach Control/Center and Declare an Emergency. Squawk 7700 when able. Report location, altitude, heading, fuel status, and number of persons on board. State that you are inadvertent IMC and request assistance.

The following procedures shall be utilized in following order of preference:
1. Radar vectors to VMC conditions.
2. Vectors to the closest appropriate approach.

Form Number: 5159
Effective Date: 2/21/18
Mechanical Interruption Summary Report – FO-5158

Section One: Aircraft Information

1. AIRCRAFT REGISTRATION NUMBER: 2. AIRCRAFT SERIAL NUMBER: 3. DATE OF INTERRUPTION:

4. MAKE: MODEL: ENGINE(s): PROPELLER(s):

5. HOURS: CYCLES:

Section Two: Details of Interruption

6. TIME: CONDITIONS: (Check one): Day VFR Night VFR Day IFR Night IFR

7. NUMBER OF PROPSDamaged:

8. PILOT IN COMMAND: NAME (PRINTED): CERTIFICATE No: DATE:

Section Three: Cause of Interruption

9. CAUSE OF INTERRUPTION: To be completed by Maintenance personnel. Describe the known or suspected cause of the interruption:

10. MECHANIC NAME (PRINTED): CERTIFICATE No: DATE:

11. REVIEWED BY: TITLE: DATE:

12. SUBMITTED BY: TITLE: DATE:

Whenever a mechanical interruption to flight occurs, blocks 9-10 of this form shall be completed electronically by the PIC and forwarded in Word format to the mechanic correcting the issue as soon as possible but not to exceed 12 hours. The mechanic shall complete block 11 electronically and forward to the appropriate RMM and RMD for review. The RMD or RMM shall fill out block 12 and forward to the OCM via email. Completion and submission of this form to the FAA Flight Standards District Office (Denver) by the 10th of each month complies with 14 CFR 135.417.
MEL Deferral Extension – FO-5213

<table>
<thead>
<tr>
<th>Section One: MEL Deferral Extension Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension Initiated By:</td>
</tr>
<tr>
<td>Aircraft #: Model: S/N:</td>
</tr>
<tr>
<td>MEL Item: Description: Date Deferred:</td>
</tr>
<tr>
<td>MEL Item Deferral good through Midnight of:</td>
</tr>
<tr>
<td>Extension Requested through Midnight of:</td>
</tr>
<tr>
<td>Status Check Performed: Date of Last Check:</td>
</tr>
<tr>
<td>Extension Requested Due to (Check One Below):</td>
</tr>
<tr>
<td>Parts Available: Maintenance Schedule:</td>
</tr>
<tr>
<td>Personnel Available: Equipment Available:</td>
</tr>
<tr>
<td>Circumstances:</td>
</tr>
<tr>
<td>This Extension is for an additional deferral of days:</td>
</tr>
<tr>
<td>This MEL Item has been previously extended times:</td>
</tr>
<tr>
<td>With this Extension, the total deferral of this MEL Item will be days:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section Two: Acknowledgement Signatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement of Maintenance Requirements for this Extension:</td>
</tr>
<tr>
<td>Maintenance Signature: Date:</td>
</tr>
<tr>
<td>Acknowledgement of Internal Delays for this Extension:</td>
</tr>
<tr>
<td>Signature: Date:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section Three: Approval / Disapproval of Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>The request for the above MEL item deferral extension has been reviewed, and based on the reasons and circumstances given, this request is:</td>
</tr>
<tr>
<td>Approved: Disapproved: See Attached for Limitation:</td>
</tr>
<tr>
<td>This MEL is extended through following date:</td>
</tr>
<tr>
<td>Signature: FAA MSR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section Four: MEL Disposition (MSR Use Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEL Cleared – Complete following section:</td>
</tr>
<tr>
<td>MEL Cleared – Date:</td>
</tr>
<tr>
<td>Total Extension Time – Days:</td>
</tr>
<tr>
<td>Total Time Deferred – Days:</td>
</tr>
<tr>
<td>Signature: MEL Extended New Extension Number:</td>
</tr>
<tr>
<td>This extension was not used.</td>
</tr>
</tbody>
</table>

Form Number: FO-5213

Effective Date: 04/12/19
Night Vision Goggles Pre-Operational Checklist

Prior to use of the NVG each evening, the Pre-Operational Checklist, derived from the F4949 and M949 manufacturers’ Operators Manuals, will be completed. If a discrepancy is discovered, annotate on the Maintenance Record and/or NVG Submission Form and contact NVGPrepares@airmethods.com as per NVG SOP.

<table>
<thead>
<tr>
<th>Step</th>
<th>Item to Check</th>
<th>Procedure</th>
<th>Not Usable If:</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>Maintenance Records</td>
<td>Open maintenance records folder and check for serviceability.</td>
<td>NVG is expired or a grounding discrepancy uncorrected.</td>
</tr>
<tr>
<td>ii.</td>
<td>Inventory</td>
<td>Inventory all items.</td>
<td>Major components missing: NVG, LP8P, Helmet Mount.</td>
</tr>
</tbody>
</table>

Binocular Assembly

1. **Optical Surfaces**
 - Inspect all lenses for dirt, fingerprint residue, chips, or cracks.
 - If necessary, clean lenses.
 - Any condition that hinders vision with NVG turned on.

2. **Eye Piece Focus Assembly**
 - Rotate dioptr adjustment ring to ensure the eyepiece lens rotates freely and is not loose.
 - Range is +2 to -6 diopters.
 - **NOTE:** Dioptr may slightly exceed -6.
 - Binding, not moving freely, or loose.
 - Entire eyepiece assembly rotates.

3. **Objective Focus Assembly**
 - Rotate focus knob to ensure free movement and check for cracks.
 - Ensure lens does not rotate freely of focus knob.
 - Focus knob binds or is unable to move.
 - Cracked or loose.

4. **Pivot Adjustment Shelf (PAS)**
 - Inspect for cracks and broken electrical circuits.
 - Check for proper operation of the spring-loaded ball bearings.
 - Check fore / aft adjustment for full range of travel.
 - Ensure free movement of tilt adjustment lever.
 - Inspect the dual contacts for dirt, corrosion, or wear.
 - Broken electrical circuits are present or the PAS is cracked / damaged.
 - The ball bearings cannot be depressed slightly or the bearings are cracked / chipped.
 - Full travel range is not achieved or the adjustment binds during travel.
 - The tilt lever binds or the binocular will not remain at the angle to which it is set.
 - Contacts are worn, loose, or missing.

Form Number: FO-5415

Effective Date: 04/20/18
NVG Pre-Operational Checklist – FO-5415 (Page 2 of 3)
NVG Pre-Operational Checklist – FO-5415 (Page 3 of 3)

<table>
<thead>
<tr>
<th>Step</th>
<th>Item to Check</th>
<th>Procedure</th>
<th>Not Usable If</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>Lock Release Button</td>
<td>Depress the lock release button while smoothly, but firmly, rotating the NVG to the UP and DOWN position.</td>
<td>NVG will not remain in the UP or DOWN position.</td>
</tr>
<tr>
<td>14.</td>
<td>Vertical Adjustment</td>
<td>Rotate the vertical adjustment of the Helmet Mount.</td>
<td>Movement binds or does not adjust.</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Step</th>
<th>Item to Check</th>
<th>Procedure</th>
<th>Not Usable If</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.</td>
<td>Soft Case</td>
<td>Remove all items and shake out loose dirt or foreign material and inspect for tears, cuts, excess wear, or damage to zipper.</td>
<td>Not applicable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annotate damage on the Maintenance Record.</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Lens Cap Assembly</td>
<td>Inspect for cracked, torn, or missing covers. Annotate damage on the Maintenance Record.</td>
<td>Not applicable.</td>
</tr>
</tbody>
</table>

Monocular Function and Image

- **CAUTION:** Only operate NVGs under dark conditions!

<table>
<thead>
<tr>
<th>Step</th>
<th>Item to Check</th>
<th>Procedure</th>
<th>Not Usable If</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>Monocular Function</td>
<td>While focusing and adjusting the NVG, check for intermittent operation of either monocular by manipulating the IPD, focus, and binocular adjustments through their range.</td>
<td>Either monocular loses power.</td>
</tr>
<tr>
<td>18.</td>
<td>Viewed Image</td>
<td>Check for image defects. NOTE: There are two groups of “defects” that may be encountered: operational and cosmetic. Operative defects render the NVG unserviceable and include: shading, edge glow, flashing, flickering, and intermittent operation. Cosmetic defects do not render the NVG unserviceable, unless they are of severity that hinders acuity. These types of defects include: bright spots, emission points, dark spots, fixed-pattern noise, chicken wire, image disparity, image distortion, vertical glare.</td>
<td>Flickering, flashing, bright spots, edge glow, shading, or excessive fixed pattern noise is present.</td>
</tr>
</tbody>
</table>
Operations Publication Verification Form – FO-5412

Section One: Publication Information
Updates must be installed, and this form completed and returned by:

- **Sent by:**
- **Documentation:** GOM (General Operations Manual) *(optional)*
- **Revision Number:**
- **Revision Date:**
- **Description of Revision:**

Section Two: Instructions
Important: You must generate one verification form per aircraft for which you are supplying updated documentation.

1. Replace the aircraft’s existing documentation with the current revision, whether it is stored onboard the aircraft or in a designated base location.
2. In Section Three, type the corresponding information into each of the five boxes.
3. In Section Four, verify your actions by typing your name and the date into the corresponding boxes.
4. Save the completed form with a filename using the following naming convention:
 - specify: FOM<AsишionDate_AircraftModel_AircraftSerialNumber_TailNumber.pdf
5. Send the completed form as an email attachment to your Regional Aviation Director (RAD). If you do not have a RAD, send it to your Regional Aviation Manager (RAM). The Director of Aircraft will forward the form to the OCS Pilot at PubVerifications. @airmethods.com.

Section Three: Aircraft Affected
- **Date Installed:**
- **Base/Location:**
- **Aircraft Type:**
- **Aircraft Tail Number:**
- **Aircraft Serial Number:**

Section Four: Verification Statement
I have reviewed, read, and installed the above-specified materials in the designated location, as required.

- **Name:**
- **Date:**

Form Number: FO-5412
Effective Date: 04/12/19
Pre-start/Pre-takeoff Confirmation Check
This is a sample of the sticker that is to be placed in plain view of the pilot (See “Pre-start/Pre-takeoff Confirmation Check” on page 93.). Ask your Regional Aviation Director or Regional Aviation Manager if you need some of these stickers supplied to you.

In the event that the required checklist sticker is missing from an aircraft, and a replacement cannot be immediately located, the following image may be printed and substituted.

Pre-Start Confirmation Check
PFRA Approved (Crew Response Required)
Cell Phones / Tablets - OFF (Crew Response Required)
Before Start Checklist Complete
Clear to Start (Crew Response Required)

Pre-Takeoff Confirmation Check
Condition Lever(s) – As required
Before Takeoff Checklist Complete
Ready for Takeoff (Crew Response Required)
Record of Airman Flight and Duty Time

Duty Time Summary Report

<table>
<thead>
<tr>
<th>Date</th>
<th>Hours</th>
<th>Duty</th>
<th>Flight</th>
<th>Duty</th>
<th>Flight</th>
<th>Total</th>
<th>Pending</th>
<th>Lost</th>
<th>Accident</th>
<th>Total</th>
<th>Lost</th>
<th>Accident</th>
<th>Total</th>
<th>Pending</th>
<th>Lost</th>
<th>Accident</th>
</tr>
</thead>
<tbody>
<tr>
<td>05/01/2019</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>05/02/2019</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>05/03/2019</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>05/04/2019</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>05/05/2019</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

For Official Use Only

- Signed by [Signature]
- Date: [Date]

I certify that the information on this form is true and correct. I declare that the individual whose name is not on record is not subject to any restriction, hazard, or other condition that might affect his or her ability to perform duties for Air Methods Operations Company.
Glossary
Glossary

AAIP — Approved Aircraft Inspection Program
ACTT — Aircraft Total Time
A/C — aircraft
ACEB — Alert Commercial Engine Bulletin
ACFT — aircraft
AD — Airworthiness directive
AFD — Airport and Facilities Directory
AFM — airplane Flight Manual
A/F — For airframe
AGL — above ground level
A&P — airframe and Powerplant
AIDMOR — Acronym for Accident, Incident, Damage, Malfunction, Operations Report
AIM — aeronautical Information Manual
AMC — Air Methods Corporation
APIS — Advanced Passenger Identification System
ASB — Alert Service Bulletin
ASOS — Automatic Surface Observation System
ASR — Airport Surveillance Radar
ATC — Air Traffic Control
ATIS — Automated Terminal Information System
CEB — Commercial Engine Bulletin
Certificate Holder — Refers to Air Methods

CFR — Code of Federal Regulations

CHDO — Certificate Holders District Office

CL — calendar

CSL — Commercial Service Letter

CTAF — Common Traffic Advisory Frequency

C/W — complied with

CYA — Conform Your Aircraft

CYC or CYL — cycle

designee — A person designated to act in the capacity of another within a defined scope. The designees for the director of operations are the chief pilot, director of aviation risk and compliance, regional aviation director, and regional aviation manager or senior lead pilot for each respective program/base. The designees for the director of maintenance are the regional maintenance directors, maintenance manager for each respective program, or the on-call mechanic for that base or program.

DH — Decision Height

EFB — Electronic Flight Bag (iPad)

ENG — Engine

FAA — Federal Aviation Administration

FBO — Fixed Base Operator

FC — Flight Cycle

F/C — Fuel Control

PFRA — Pre-flight Risk Analysis
FLT — Operational Check Flight
FPD — Freezing Point Depressant
FSS — Flight Service Station
G/B — Gear Box
GOM — General Operations Manual
HAA — Helicopter Air Ambulance
HAT — Height Above Touchdown
HNVGO — helicopter night vision goggle operations
IA — Inspection Authorization
IAW — In Accordance With
IFR — Instrument Flight Rules
IMC — Instrument Meteorological Conditions
IIMC — Inadvertent Instrument Meteorological Conditions
ILS — Instrument Landing System
INSP — Inspection
LAHSO — Land and Hold short Operations
LL — Life Limited
LOX — Liquid Oxygen System
MDA — Minimum Descent Altitude
MEA — Minimum Enroute Altitude
MEL — Minimum Equipment List
METAR — French acronym translates as Aviation Routine Weather Report

MIS — Mechanical Interruption Summary

MM — Maintenance Manual

M/R — Main Rotor

MOC — Maintenance Operational Check

MOCA — Minimum Obstruction Clearance Altitude

MSA — Minimum Safe Altitude

MSL — Mean Sea Level

NAVAID — Navigation Aid

NDB — Non-directional Radio Horning Beacon

NEF — Nonessential Furnishings

NTSB — National Transportation Safety Board

NVG — Night Vision Goggle

OC — On Condition

Operator — Refers to the Certificate Holder

OH — Overhaul

Ops Ck — Operational Check

PAIP — Post Accident/Incident Plan

PAR — Precision Approach Radar

PCW — Previously Complied With

PED — Portable Electronic Device
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC</td>
<td>Pilot-in-Command</td>
</tr>
<tr>
<td>PIREP</td>
<td>Acronym for Pilot Weather Report.</td>
</tr>
<tr>
<td>PMI</td>
<td>Principal Maintenance Inspector</td>
</tr>
<tr>
<td>PMSP</td>
<td>Pilot’s Maintenance and Servicing Procedure</td>
</tr>
<tr>
<td>POH</td>
<td>Pilot’s Operating Handbook</td>
</tr>
<tr>
<td>RFM</td>
<td>Rotorcraft Flight Manual</td>
</tr>
<tr>
<td>ROC</td>
<td>Restricted Operational Check</td>
</tr>
<tr>
<td>RT</td>
<td>Retirement</td>
</tr>
<tr>
<td>SB</td>
<td>Service Bulletin</td>
</tr>
<tr>
<td>SDR</td>
<td>Service Difficulty Report</td>
</tr>
<tr>
<td>SI</td>
<td>Service Instruction</td>
</tr>
<tr>
<td>SIC</td>
<td>Second-in-Command</td>
</tr>
<tr>
<td>SMS</td>
<td>Safety Management System</td>
</tr>
<tr>
<td>SOIR</td>
<td>Simultaneous Operations on Intersecting Runways</td>
</tr>
<tr>
<td>STC</td>
<td>Supplemental Type Certificate</td>
</tr>
<tr>
<td>TAF</td>
<td>Terminal Aerodrome Forecasts</td>
</tr>
<tr>
<td>TB</td>
<td>Technical Bulletin</td>
</tr>
<tr>
<td>TCC</td>
<td>Technical Compliance Certification</td>
</tr>
<tr>
<td>TCU</td>
<td>Torque Control Unit</td>
</tr>
<tr>
<td>TFR</td>
<td>Temporary Flight Restrictions</td>
</tr>
<tr>
<td>T/R</td>
<td>Tail Rotor</td>
</tr>
</tbody>
</table>
Glossary

TSI — Time Since Inspection

TT — Total Time

TSN — Time Since New

TSO — Time Since Overhaul

UNICOM — Universal Communications

VFR — Visual Flight Rules

VMC — Visual Meteorological Conditions

VOR — VHF Omnidirectional Range

W&B — Weight and Balance

XMSN — Transmission